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License

SPILADY – A Spin-Lattice Dynamics Simulation Program

Version 1.0

Copyright (C) 2015 Culham Centre for Fusion Energy, United Kingdom
Atomic Energy Authority, Oxfordshire OX14 3DB, United Kingdom

Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain a
copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software dis-
tributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or im-
plied. See the License for the specific language governing permissions and
limitations under the License.
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Apache License

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DIS-
TRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copy-
right owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that en-
tity. For the purposes of this definition, "control" means (i) the power, direct
or indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50

"You" (or "Your") shall mean an individual or Legal Entity exercising per-
missions granted by this License.

"Source" form shall mean the preferred form for making modifications, in-
cluding but not limited to software source code, documentation source, and
configuration files.

"Object" form shall mean any form resulting from mechanical transforma-
tion or translation of a Source form, including but not limited to compiled
object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object
form, made available under the License, as indicated by a copyright notice

5
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that is included in or attached to the work (an example is provided in the
Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form,
that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a
whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or
merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

"Contribution" shall mean any work of authorship, including the original
version of the Work and any modifications or additions to that Work or
Derivative Works thereof, that is intentionally submitted to Licensor for in-
clusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the pur-
poses of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, in-
cluding but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or
on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or oth-
erwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and subse-
quently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this
License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those
patent claims licensable by such Contributor that are necessarily infringed
by their Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim



CONTENTS 7

in a lawsuit) alleging that the Work or a Contribution incorporated within
the Work constitutes direct or contributory patent infringement, then any
patent licenses granted to You under this License for that Work shall ter-
minate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and
in Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy
of this License; and You must cause any modified files to carry prominent
notices stating that You changed the files; and You must retain, in the
Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Deriva-
tive Works; and If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must include
a readable copy of the attribution notices contained within such NOTICE
file, excluding those notices that do not pertain to any part of the Deriva-
tive Works, in at least one of the following places: within a NOTICE text
file distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within a
display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informa-
tional purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, repro-
duction, or distribution of Your modifications, or for any such Derivative
Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to
the Licensor shall be under the terms and conditions of this License, with-
out any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor, except
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as required for reasonable and customary use in describing the origin of the
Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in
writing, Licensor provides the Work (and each Contributor provides its Con-
tributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, either express or implied, including, without lim-
itation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise
of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether
in tort (including negligence), contract, or otherwise, unless required by ap-
plicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any char-
acter arising as a result of this License or out of the use or inability to use
the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possi-
bility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the
Work or Derivative Works thereof, You may choose to offer, and charge a
fee for, acceptance of support, warranty, indemnity, or other liability obli-
gations and/or rights consistent with this License. However, in accepting
such obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if You agree
to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boiler-
plate notice, with the fields enclosed by brackets "[]" replaced with your own
identifying information. (Don’t include the brackets!) The text should be
enclosed in the appropriate comment syntax for the file format. We also
recommend that a file or class name and description of purpose be included
on the same "printed page" as the copyright notice for easier identification
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within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain a
copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software dis-
tributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or im-
plied. See the License for the specific language governing permissions and
limitations under the License.
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Date: 16 Oct 2015
Responsible person: Pui-Wai (Leo) Ma
1. Bug fixed in quantum_noise_CPU.cpp and quantum_noise_GPU.cu.
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ten for clarity.

Date: 13 Apr 2016
Responsible person: Pui-Wai (Leo) Ma
1. Bug fixed in scale_step_GPU.cu.
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and core_dTe_GPU.cu accordingly.
3. Added variables Msteps_quantum and Nfrequency_quantum. Edited
quantum_noise_CPU.cpp, quantum_noise_GPU.cu, core_dp_CPU.cpp, core_dp_GPU.cu,
read_variables.cpp, default.h and global.h accordingly.
4. Added example 4.9 – Collision cascade.
5. Changed version from 1.0 to 1.0.1.
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1

Introduction

“We know what we are, but know not what we may be.”

– William Shakespeare (1564 - 1616)

1.1 Magnetism and Spin-lattice dynamics

Magnetic materials are used in a broad variety of applications. These ap-
plications range from the use of magnetic degrees of freedom in storage,
recovery, transmission, manipulation, and processing of information, includ-
ing quantum computing, to technological issues related to materials for fu-
sion plasma confinement arising from the magnetism of ferritic-martensitic
steels.

Magnetic excitations influence the stability of crystal phases of magnetic
materials, where particularly striking examples are iron, iron-based alloys
and steels. The body-centered cubic crystal structure of pure iron is stable
at room temperature because iron is magnetic [1, 2]. Other elements in
the same group of the Periodic Table, non-magnetic ruthenium (Ru) and
osmium (Os), both have hexagonal crystal structure [3].

At high temperatures close to 900◦C, magnetic fluctuations make the
bcc phase of iron unstable against its transformation into the fcc phase,
and this gives rise to softening of elastic constant c′ = (c11 − c12)/2 [4, 5].
This elastic constant describes the volume-conserving linear response of the
bcc phase of Fe to an infinitesimal deformation that transforms a cube into
a parallelepiped on a square base. If the height to side aspect ratio of the
parallelepiped equals

√
2, the deformed bcc structure is identical to fcc (with

a different lattice parameter), this is known as the Bain transformation
[6]. This bcc-fcc transition in pure iron occurs at 1185K. At even higher
temperatures (1667K) the fcc phase transforms back into the bcc phase
[7, 8], and at an even higher temperature (1811K) iron melts. It turns out
that the lower-temperature bcc-fcc transition is of greater significance to

13



14 1. INTRODUCTION

applications than melting, as the bcc-fcc softening, stimulated by magnetic
fluctuations [8], is a microscopic phenomenon that provides the physical
foundation for the steel manufacturing industry.

A self-interstitial atom defect in ferromagnetic bcc iron adopts the 〈110〉
dumbbell configuration, whereas in all the non-magnetic bcc transition met-
als like tungsten, molybdenum, or vanadium, a self-interstitial defect adopts
a geometrically different 〈111〉 crowdion configuration [9, 10]. These exam-
ples show that there are remarkable cases where the phase stability [11] and
even the mechanical properties of transition metals and alloys are strongly
influenced by magnetism [12]. It is therefore desirable to develop an atom-
istic simulation technique that treats both the kinematic motion of atoms and
precession of magnetic moments resulting from thermal excitation. Conven-
tional molecular dynamics only treats the kinematic motion of atoms and is
unable to provide information about the time evolution of magnetic config-
urations in a material.

The Landau-Lifshitz and Gilbert (LLG) equations [13] describe the clas-
sical dynamics of spins. Both equations are purely dissipative. If a spin
system evolves according to the LLG equations, it always relaxes into the
lowest energy ground-state configuration. This is not consistent with the ob-
served behaviour of thermal spin excitations, where at a finite temperature
the spins continuously fluctuate and do not settle into a static lowest energy
ground state. To account for this effect, Brown [14] proposed a stochastic
integration method involving the use of the fluctuation-dissipation theorem
(FDT) [15, 16]. Stochastic evolution equations including dissipation and
fluctuation terms make it possible to describe finite-temperature fluctuating
spin dynamics in thermal equilibrium.

There have been several attempts to incorporate magnetic effects in the
embedded atom method (EAM) many-body potential formalism for molec-
ular dynamics (MD) simulations. Dudarev and Derlet [17, 18] and Ackland
[19] proposed ways of including magnetism in the semi-empirical potential
framework, to enable carrying out MD simulations taking magnetism into
account. However, neither approach addressed the directional aspect of
magnetic/spin configurations, and the treatments were focused primarily on
predicting the magnitudes of atomic magnetic moments [17, 18, 19].

Developing a dynamic simulation model for spin waves, lattice vibra-
tions, and their interaction at a finite temperature proved to be a challenge.
Omelyan et al. [20] and Tsai et al. [21] discovered a way of treating spin and
lattice dynamics within a unified approach, still involving highly simplified
model assumptions. They noted the advantage of using the Suzuki-Trotter
decomposition (STD) algorithm [22] for the treatment of non-commuting co-
ordinate and spin evolution operators. The spin degrees of freedom in this
approach were treated purely classically and the question about the role of
quantum effects in spin dynamics was not addressed. Also, simulations were
limited to relatively small systems since no parallel algorithm for integrating
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the spin dynamics equations was available.
We first performed spin-lattice dynamics simulations in 2007 [23, 24],

having formulated a model with parameters matching ab initio data for
bcc ferromagnetic iron. The problem of parallelizing spin-lattice dynamics
simulations was addressed and solved, through the use of the Suzuki-Trotter
decomposition, in 2009 [25]. We then posed and addressed questions about
how to compute the temperature of a dynamically evolving spin ensemble
[26] and how to efficiently integrate the stochastic spin equations of motion
[27]. We have now included the electronic degrees of freedom in spin-lattice
dynamics [28, 29], and developed a model for longitudinal spin fluctuations
[30].

Spin-lattice dynamics simulations have been applied to a variety of sys-
tems, such as iron thin films [31], the treatment of self-diffusion in iron
[32, 33], and dynamic magneto-caloric effects [34]. Significant advances have
been made by our colleagues at CEA, France [35, 36] and at Oak Ridge Na-
tional Laboratory, USA [37].

To broaden the scope of applications of spin-lattice dynamics simula-
tions, we have now fully revised and rewritten the simulation code, produc-
ing a new, hopefully more user-friendly, spin-lattice dynamics simulation
program. We hope that this will help advance this challenging field of direct
time-dependent simulation of magnetic materials, and will enable scientists
not yet familiar with the technique, to learn and apply it.

1.2 Papers

Papers, giving a detailed description of the spin-lattice dynamics simulation
methodology and explaining the fundamentals of the method, are listed be-
low. A SPILADY user is advised to refer to the material given in the papers
when performing simulations, as the papers provide answers to questions
that we are not able to cover in detail in this manual.

1. The basics of the spin-lattice dynamics algorithm:

• “Spin-Lattice Dynamics Simulations of Ferromagnetic Iron”, Pui-Wai
Ma, C. H. Woo and S. L. Dudarev, AIP Conf. Proc. 999, 134 (2008)

• “Large-scale simulation of the spin-lattice dynamics in ferromagnetic
iron”, Pui-Wai Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B 78,
024434 (2008)

2. Spin-lattice-electron dynamics / molecular-electron dynamics:

• “Spin-lattice dynamics model for magnon-phonon-electron heat trans-
fer on a million atom scale” Pui-Wai Ma, S. L. Dudarev and C. H.
Woo, J. Appl. Phys. 111, 07D114 (2012)
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• “Spin-lattice-electron dynamics simulations of magnetic materials”,
Pui-Wai Ma, S. L. Dudarev, and C. H. Woo, Phys. Rev. B, 85,
184301 (2012)

3. Local collective motion of atoms and electrons:

• “Spin-lattice-electron dynamics simulations of magnetic materials”,
Pui-Wai Ma, S. L. Dudarev, and C. H. Woo, Phys. Rev. B, 85,
184301 (2012)

4. Fluctuation-dissipation Langevin spin dynamics:

• “Langevin spin dynamics”, Pui-Wai Ma and S. L. Dudarev, Phys. Rev.
B 83, 134418 (2011)

5. Longitudinal magnetic fluctuations:

• “Longitudinal magnetic fluctuations in Langevin spin dynamics”, Pui-
Wai Ma and S. L. Dudarev, Phys. Rev B 86, 054416 (2012)

6. How to compute the kinematic temperature of atoms and temperature
of fluctuating magnetic moments:

• “Temperature for a dynamic spin ensemble”, Pui-Wai Ma, S. L. Du-
darev, A. A. Semenov, and C. H. Woo, Phys. Rev. E 82, 031111
(2010)

7. A parallel algorithm for spin-lattice dynamics simulations:

• “Parallel algorithm for spin and spin-lattice dynamics simulations”,
Pui-Wai Ma and C. H. Woo, Phys. Rev. E 79, 046703 (2009)

8. A paper describing, probably in somewhat lesser detail than the manual,
this computer code (SPILADY):

• “ SPILADY: A parallel CPU and GPU code for spin–lattice magnetic
molecular dynamics simulations”, Comp. Phys. Comm. 207, 350
(2016) Pui-Wai Ma, S.L. Dudarev and C.H. Woo
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Theory

“We cannot solve our problems with the same thinking we used
when we created them.”

– Albert Einstein (1879 - 1955)

We start with a brief summary of equations of motion used in molecular
dynamics (MD), spin dynamics (SD) and spin-lattice dynamics (SLD). Then
we show how to treat longitudinal fluctuations of magnetic moments, link
atomistic simulations to the heat transfer equation for the free electrons,
and introduce the notion of local collective motion of atoms and electrons,
which is required to make sure that on average electrons move together with
the atoms. These methods are described, in greater detail, in the papers
mentioned in section 1.2 above.

2.1 Molecular Dynamics

We start from a conventional MD simulation. A classical Hamiltonian de-
scribing moving interacting atoms has the form

H =
N
∑

i=1

p2
i

2mi
+ U(R1, R2, ..., RN ), (2.1)

where pi is the momentum of atom i, mi is its mass, Ri = (xi, yi, zi) is
the position vector of the atom, and U is the potential energy of interaction
between the atoms, which varies depending on where atoms are in real space.
The classical mechanics Hamilton equations of motion, which describe how
the positions and momenta of each of the N atoms evolve as functions of
time, are

dRi

dt
=

∂H
∂pi

=
pi

m
, (2.2)

dpi

dt
= − ∂H

∂Ri
= − ∂U

∂Ri
. (2.3)

17
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The velocity of an atom vi = pi/mi and the force acting on the atom
Fi = −∂U/∂Ri satisfy the Newton equations of motion, which follow from
the above Hamilton equations, namely

dRi

dt
= vi, (2.4)

dvi

dt
=

1
mi

Fi. (2.5)

A molecular dynamics simulation algorithm integrates these Newton equa-
tions. How this numerical integration is performed in practice is explained
on page 78 of the treatise "Computer Simulation of Liquids" by M. P. Allen
and D. J. Tildesley [38].

While molecular dynamics equations are entirely deterministic, the mo-
tion of atoms is also affected by random forces associated, for example, with
electronic excitations. Such stochastic effects can be modelled assuming that
in addition to the regular deterministic part, the force acting on an atom
also has a stochastic component. As as result, the deterministic Newtonian
molecular dynamics is replaced by stochastic Langevin molecular dynamics,
where the equations of motion have the form [15, 16]:

dRi

dt
=

pi

m
, (2.6)

dpi

dt
= − ∂U

∂Ri
− γl

pi

m
+ fi. (2.7)

Here γl is a damping parameter and fi is a δ-correlated fluctuating force,
satisfying conditions 〈fi〉 = 0 and 〈fiα(t)fjβ(t′)〉 = µlδijδαβδ(t − t′). Using
the fluctuation-dissipation theorem, it is possible to prove that in thermal
equilibrium the magnitude of fluctuations of random forces and the damping
coefficient are related to each other through the equation µl = 2γlkBT . If in
Langevin dynamics we take T as the temperature of an external thermostat,
we can use Langevin equations to thermalize the system through stochastic
forces acting on atoms.

In practical simulations, fluctuating forces are modelled using a ran-
dom number generator (RNG). In SPILADY, we use a thread-safe RNG
written following George Marsaglia’s MWC (multiply with carry) algorithm
and Box-Muller transformation for simulations running on CPU. In GPU
simulations, a CUDA built-in RNG following the XORWOW algorithm and
Box-Muller transformation is used.

2.2 Spin Dynamics

For an arbitrary spin Hamiltonian H, the equation governing the evolution
of a classical spin vector has the form [30]:

dSi

dt
=

1
h̄

[Si × Hi] , (2.8)
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where the effective magnetic field acting on the spin is Hi = −∂H/∂Si. This
equation retains its form even if we treat Si as an operator, i.e. if we replace
vector Si in Eq. (2.8) by Ŝi. This quantum-mechanical generalization is
valid if the effective field Hi is a vector. The approximation applies for
example if the dynamics of each individual spin in the material is treated in
the mean-field approximation [30].

If the magnitudes of all the magnetic moments remain constant in the
course of their dynamic evolution, i.e. if each magnetic moment vector
remains on the surface of a sphere of constant radius, the Langevin equations
of motion can be written as [14, 27]:

dSi

dt
=

1
h̄

[Si × (Hi + hi) − γsSi × (Si × Hi)] , (2.9)

where γs is a damping parameter and hi(t) is a δ-correlated fluctuating field,
satisfying conditions 〈hi(t)〉 = 0 and 〈hiα(t)hjβ(t′)〉 = µsδijδαβδ(t − t′). The
fluctuation-dissipation relation for the moments reads µs = 2h̄γskBT .

While the equations of motion for the spins (2.8) are entirely general,
in practical applications the Hamiltonian describing interaction between the
spins is often taken in the Heisenberg form,

H = −1
2

∑

i,j

JijSi · Sj , (2.10)

where Jij is the so-called exchange coupling parameter. The magnitude
of Jij defines the strength of interactions between neighbouring spins. The
magnitude of this interaction determines the Curie or the Neél temperatures
TC or TN . Values of exchange parameters Jij can be deduced from ab initio
calculations [41, 42].

In thermodynamic equilibrium, the temperature of a dynamically evolv-
ing spin system can be computed using the following equation [26]:

T =
1

2kB

∑

i |Si × Hi|2
∑

i Si · Hi
. (2.11)

This equation is valid only if the spin system is in thermal equilibrium. Dur-
ing transients, the time-dependent temperature values calculated using this
equation should only be treated as estimates. A remarkable property of the
above formula for the spin temperature is that the temperature computed
using this formula is not positive definite. Negative spin temperatures can
be realized for configurations where moments Si and effective fields Hi are
anti-parallel [26].

2.3 Longitudinal spin fluctuations

In an itinerant magnetic system, both directions and magnitudes of magnetic
moments fluctuate. To describe directional and longitudinal fluctuations of
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magnetic moments on an equal footing, we introduce fully three-dimensional
spin Langevin equations of motion [30]

dSi

dt
=

1
h̄

[Si × Hi] − γs
∂H
∂Si

+ ξi (2.12)

=
1
h̄

[Si × Hi] + γsHi + ξi. (2.13)

In the above equations γs is a damping parameter and ξi(t) is a δ-correlated
random noise. The noise function ξi(t) satisfies conditions 〈ξi〉 = 0 and
〈ξiα(t)ξjβ(t′)〉 = µsδijδαβδ(t − t′). The fluctuation-dissipation relation for
equations (2.13) reads µs = 2γskBT . The three-dimensional Langevin equa-
tions (2.13) can be mapped onto the two-dimensional Langevin equations
(2.9) if the movement of each spin vector is constrained to the surface of a
sphere [30].

The spin temperature at equilibrium can now be calculated using the
following formula [30]:

T =

∑

i,α (∂H/∂Siα)2

kB
∑

i,α ∂2H/∂S2
iα

. (2.14)

For transient non-equilibrium configurations the above formula only pro-
vides an estimate for the actual temperature of the system. The formula
was derived using a Hamiltonian where spins were treated as 3-dimensional
vectors. A representative example is given by the Heisenberg-Landau Hamil-
tonian [8, 30, 34]:

H = HH + HL, (2.15)

where

HH = −1
2

∑

i,j

JijSi · Sj (2.16)

HL =
∑

i

AiS
2
i + BiS

4
i + CiS

6
i + DiS

8
i (2.17)

The Landau part HL of the Heisenberg-Landau Hamiltonian is a polynomial
in S2

i = S2
i . The Landau coefficients Ai, Bi, Ci and Di can be derived from

ab initio calculations [30, 34].

2.4 Spin-Lattice Dynamics

To simulate the motion of atoms and dynamic evolution of spins, we need a
Hamiltonian that treats both the spins and the atoms, as well as interaction
between them - in other words, the interaction that couples atomic coordi-
nates and directions of atomic spins. Hence the Hamiltonian is expected to
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have a general form like H = H({R}, {p}, {S}). In the context of the SPI-
LADY program, we use two different Hamiltonians, depending on whether
or not we intend to treat longitudinal magnetic fluctuations.

A Hamiltonian that does not include longitudinal fluctuations of mag-
netic moments has the form

H = Hlatt + Hspin + Hcorr, (2.18)

where

Hlatt =
∑

i

pi
2

2m
+ U(R), (2.19)

Hspin = −1
2

∑

i,j

Jij(R)Si · Sj , (2.20)

Hcorr =
1
2

∑

i,j

Jij(R)|Si||Sj |. (2.21)

Here the coordinate-dependent exchange coupling function is taken as a
pairwise function of interatomic distances, i.e. Jij(R) = Jij(Rij). Equation
(2.21) is a correction term for the Heisenberg spin Hamiltonian. Since the
magnitude of each spin vector |Si| is a constant, the correction term is a
function of atomic coordinates only. We introduce such a correction term
only for computational convenience, as this makes it possible to use the
existing parameterizations of many-body potentials, for example the DD05
iron potential [17], and modify them by simply adding a Heisenberg-like
coordinate-dependent part. The correction that we adopt assumes that the
ground state of the system is ferromagnetic.

The spin-lattice dynamics equations of motion are

dRi

dt
=

pi

m
, (2.22)

dpi

dt
= − ∂H

∂Ri
= − ∂U

∂Ri
−
∑

j

∂Jij

∂Ri
(Si · Sj − |Si||Sj |), (2.23)

dSi

dt
=

1
h̄

[Si × Hi] , (2.24)

where the effective field Hi is Hi = −∂H/∂Si =
∑

i JijSj . From the above
equations, we see that the lattice and spin degrees of freedom are coupled
via a coordinate-dependent exchange function Jij(R). Langevin thermostat
can be added to the spin-lattice dynamics equations by including appropri-
ate fluctuation and dissipation terms in the right-hand side of the above
equations.

To treat longitudinal magnetic fluctuations, we use the Heisenberg-Landau
Hamiltonian

Hspin = HH + HL, (2.25)
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where

HH = −1
2

∑

i,j

Jij(R)Si · Sj (2.26)

HL =
∑

i

Ai(R)S2
i + Bi(R)S4

i + Ci(R)S6
i + Di(R)S8

i (2.27)

The Landau Hamiltonian is now also coordinate-dependent. In SPILADY
we assume that Ai(R) = Ai(ρi), Bi(R) = Bi(ρi) etc., where ρi is the local
effective electron density defined as the argument of the embedding function
of the embedded atom method (EAM) potential. Equations of motion for
the kinematic momenta of atoms now have the form

dpi

dt
= − ∂U

∂Ri
− ∂Jij

∂Ri
(Si · Sj − |Si||Sj |),

+
∂Ai

∂Ri
S2

i +
∂Bi

∂Ri
S4

i +
∂Ci

∂Ri
S6

i +
∂Di

∂Ri
S8

i . (2.28)

If we adopt the Langevin thermostat as mentioned in connection with equa-
tion (2.13), we need to exercise caution when defining the effective field.
Since the magnitudes of magnetic moments are no longer constant, the cor-
rection term, i.e. equation (2.21), needs to be included in the derivation of
the effective field, namely

Hi =
∑

j

Jij

(

Sj − SiSj

Si

)

− (2Ai + 4BiS
2
i + 6CiS

4
i + 8DiS

6
i )Si. (2.29)

Concluding this section, we note that the mathematical expression for spin
temperature (2.14) depends sensitively on the form of the spin Hamilto-
nian. If longitudinal magnetic fluctuations are included in the dynamics,
SPILADY computes spin temperature using the Heisenberg-Landau Hamil-
tonian (2.25).

2.5 Langevin Model and Heat Transfer by Elec-
trons

In a metal, conduction electrons provide the dominant contribution to ther-
mal conductivity. Heat lost to electrons has a significant effect on the motion
of atoms, particularly in the treatment of high-energy events like collision
cascades [43]. If we treat the Langevin thermostat as a physical repre-
sentation of electrons, we can relate the Langevin force model to the heat
transfer equation [44, 29]. In this way we generalize MD, spin dynamics and
spin-lattice dynamics, and include electronic degrees of freedom in a unified
discrete atomistic model. Full analysis of such a model and a derivation of
the relevant equations are given in [29].
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Within the molecular dynamics (MD) framework, a self-consistent "atomic
Langevin - electronic heat transfer" model is described by the following sys-
tem of coupled equations

dRi

dt
=

pi

m
, (2.30)

dpi

dt
= − ∂H

∂Ri
− γl

pi

m
+ fi, (2.31)

Ce
dTe

dt
= ∇ · (κe∇Te) + Gel(Tl − Te), (2.32)

where Ce is the electronic specific heat and κe is the electronic thermal con-
ductivity. The coefficient of heat transfer between the lattice and electrons
is

Gel =
3kBγl

mΩ
, (2.33)

where Ω is the volume of an atom. Tl is the lattice temperature evaluated
from the kinetic energy of atoms within a given linked-cell. For a definition
of what a linked-cell is, see pages 149–152 of Ref. [38].

A model for spins on a rigid lattice, where spins interact with conduction
electrons, is defined by the following system of equations

dSi

dt
=

1
h̄

[Si × (Hi + hi) − γsSi × (Si × Hi)] , (2.34)

Ce
dTe

dt
= ∇ · (κe∇Te) + Ges(Ts − Te), (2.35)

where the coefficient of heat transfer between spins and conduction electrons
is given by

Ges =
2kBγs

h̄Ω
〈Si · Hi〉. (2.36)

The above model neglects longitudinal magnetic fluctuations. The ensemble
average value 〈Si · Hi〉 and the spin temperature Ts are taken as instanta-
neous values calculated using time-dependent vectors {Si(t)} within each
linked cell.

If longitudinal magnetic fluctuations are taken into account, the model
acquires the form [30],

dSi

dt
=

1
h̄

[Si × Hi] + γsHi + ξi, (2.37)

Ce
dTe

dt
= ∇ · (κe∇Te) + Ges(Ts − Te). (2.38)

The coefficient of heat transfer between spins and electrons is

Ges =
kBγs

Ω

〈

∑

α

∂2H
∂S2

iα

〉

, (2.39)
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where index α refers to the three degrees of freedom of a spin vector.
In the full spin-lattice dynamics (SLD) model, the heat transfer equation

has the form

Ce
dTe

dt
= ∇ · (κe∇Te) + Gel(Tl − Te) + Ges(Ts − Te). (2.40)

Equations of motion for the spins and the atoms, and definitions of various
constants and variables, remain unchanged.

2.6 Local Collective Motion of Atoms

If there is a group of atoms moving uniformly in the same direction, the
kinetic energy and temperature of atoms in the moving centre of mass frame
can be evaluated as

Tl =
2

3NkB

∑

i

(pi − P)2

2m
, (2.41)

where P = (1/N)
∑

i pi is the average momentum of the atoms.
The heat transfer equation assumes that the local temperature of the

lattice is defined in the centre of mass frame, and that the kinetic energy
associated with the uniform motion of atoms is not included in the definition
of temperature. In practical terms, this implies that in the treatment of
heat transfer from atoms to electrons and vice versa, only the motion of
atoms relative to conduction electrons should be taken into account when
evaluating the rate of heat transfer.

The way to address the issue is to treat lattice-electron energy transfer
using locally moving frames. If we take lattice-electron interactions as local
properties of the material, we write [29]:

dRi

dt
=

pi

m
, (2.42)

dpi

dt
= − ∂H

∂Ri
− γl

m
(pi − pA) + (fi − fA), (2.43)

Ce
dTe

dt
= ∇ · (κe∇Te) + Gel(Tl − Te), (2.44)

where

pA = 1/NA

∑

i∈A

pi, (2.45)

fA = 1/NA

∑

i∈A

fi, (2.46)

Gel =
3kB(NA − 1)γl

mVA
, (2.47)

where A refers to a local domain of the system, NA is the number of atoms
in this domain, and VA is the volume of A. In practice, we identify domains
with linked cells.
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2.7 Suzuki-Trotter decomposition

This section is intended for those who are interested in the computer algo-
rithm underlying spin-lattice dynamics simulations. If one has no intention
of changing the integration algorithm, one may skip reading this section.

The Suzuki-Trotter decomposition (STD) is a way of performing practi-
cal calculations with non-commuting evolution operators. It is a symplectic
integration method that conserves the volume of phase space during dy-
namic evolution of the system. As a result, numerical errors are unbiased,
and this results in better conservation of quantities that are expected to
be conserved under the relevant dynamics, for example the total energy.
Hatano et al. [22] wrote a comprehensive and easy-to-read paper on this
topic. We briefly describe the method here and discuss its applications.

Suppose that there is a partial differential equation describing the time
evolution of variable x:

dx

dt
= (A + B)x, (2.48)

where A and B are arbitrary operators. The solution of the above equation
is

x(t + ∆t) = e(A+B)∆tx(t) (2.49)

where ∆t is the time step. In general, operators A and B do not commute.
The STD is an approximate method, where up to the second order in the
time step the evolution operator can be written as:

e(A+B)∆t = eA(∆t/2)eB∆teA(∆t/2) + O
(

∆t3
)

. (2.50)

The error of the method is of the order of ∆t3, and the advantage offered
by the method is that it allows integration of non-commuting evolution
operators separately, one by one. The order in which the operators are
taken has no effect on the magnitude of the error term. Higher order STD
forms can also be derived, they are given in Ref. [22]. In our program, we
only use the second order STD formula (2.50).

If we take MD as an example, we write

d

dt

(

R
p

)

=

(

0 δR
δP 0

)(

R
p

)

(2.51)

where R = {Ri} and p = {pi}. Operators δR and δP refer to the following
operations:

dR

dt
= δRp =

p

m
, (2.52)

dp

dt
= δPR = − ∂U

∂R
. (2.53)
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Using the second order STD, we write

e(δP+δR)∆t ≈ eδP(∆t/2)eδR∆teδP(∆t/2), (2.54)

where

eδP∆t ≡ I + δP∆t (2.55)

eδR∆t ≡ I + δR∆t. (2.56)

It can be shown [22] that this is exactly equivalent to the well-known velocity
Verlet algorithm of molecular dynamics simulations [38].

A sum of several operators can also be decomposed in a similar way. For
example,

e(A+B+C+D)∆t ≈ eA(∆t/2)eB(∆t/2)eC(∆t/2)eD∆teC(∆t/2)eB(∆t/2)eA(∆t/2)

(2.57)
These operators may, for example, refer to the dissipation and fluctuation
terms in the Langevin equations, or to operations on spins δS, or to electron
temperature δTe.

Fig. 2.1 shows the flow chart of the SPILADY program, using spin-
lattice-electron dynamics as an example. The core part of the integrator
uses the second order STD formula, where A = δTe, B = δP, C = δS and
D = δR in the equation above. The sequence in which the operators are
taken is immaterial. Our aim here is to minimize the number of times forces
are evaluated in a single cycle.

Parallel programming in the case of MD is straightforward. Since the
time derivatives of variables p and R depend on their conjugate variables,
if we apply STD, an operation on a given atom does not affect other atoms
over a time step. Therefore, a parallel calculation can be performed by
parallelizing individual calculations for different atoms.

In contrast, in the case of spin dynamics, the change of value of a spin
variable Si affects the effective fields acting on other spins. In principle, one
is therefore forced to decompose an operation on the entire spin system into
operators acting on spins one by one, such that

eδS∆t = eδS1(∆t/2)eδS2(∆t/2)...eδSN ∆t...eδS2(∆t/2)eδS1(∆t/2) (2.58)

where δSi refers to an operation performed on spin i. It appears as if it is
impossible to perform calculations in parallel in this situation.

Fortunately, any conventional interatomic potential has a cut-off dis-
tance. This makes it possible to parallelize calculations at the level of
linked-cells. Details of the method can be found in Ref. [25]. The idea
is to segregate the linked-cells, which are defined in almost any MD pro-
gram, into non-interacting groups. Each linked-cell within a group must
have no interaction with other linked-cells that are members of the same
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Start

initialize();
check();

write_config();

current_step = 0;

core();

total_time += step;

check();
scale();

write_configure();

++current_step;

if (total_time >
total_production_time)

No

write_configure();
free_memory();

Yes

end

external_field();
external_force();

links();

core_dTe(step/2);

calculate_temperature();

core_dp(step/2);

core_dp(step/2);

core_dr(step);

calculate_rho();

calculate_force_energy();

core_ds(step/2);

core_ds(step/2);

core();

core_dTe(step/2);

Figure 2.1: SPILADY flow chart
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group. Parallel computation can then be performed by parallelizing with
respect to members of the same group. The evolution of spins within a
linked-cell still needs to be treated using the STD. Calculations involving
different groups should also obey the STD formula. A suitable choice of
STD at the level of spins can reduce the time required for calculating the
effective fields by a factor of two without introducing any error greater than
the third power of the time step.
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“Do not dwell in the past, do not dream of the future, concentrate
the mind on the present moment.”

– Buddha (563 BC - 483 BC)

The section explains how the program works. Although the mathemat-
ical aspects of spin dynamics and spin-lattice dynamics are more involved
than those of a conventional molecular dynamics (MD) simulations, a com-
mon rationale underlies the algorithms implemented in SPILADY. Hence
running SPILADY successfully is of comparable difficulty to making MD
simulations.

SPILADY is written using the OpenMP C/C++ and CUDA C/C++
computer languages. The program and all the examples were tested on
a computer with Dual Intel Xeon Processors E5 2680v2 2.8GHz (10 cores)
and Nvidia GeForce GTX Titan Black GPU cards, in the Linux environment
using the following compilers: gcc version 4.4.7, icc version 12.0.0, and nvcc
version 5.5. SPILADY was also tested on computers with Nvidia GeForce
GTX 480, GTX 680, GTX Titan, Tesla K40c GPU cards and Tesla M2090
GPU module.

SPILADY was written using standard syntax and not optimized for a
particular type of hardware architecture or operating system. In principle,
it should work on most common system. No external libraries are required.

3.1 Files

One downloads the program as a compressed file spilady1.0.tar.gz, and de-
compresses it using one of the standard commands, for example

$ tar -zxvf spilady1.0.tar.gz

All the files and working examples should decompress into a folder spi-
lady1.0. It is advisable to work from inside the folder by typing

29
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$ cd spilady1.0

To run the program, one needs to have several files available. They are
make.sh, control.h and variables.in. If one intends to perform an MD or an
SLD simulation, i.e. simulations involving atomic coordinates, a file defin-
ing an interatomic potential is also required, for example DD05.cpp. If one
intends to perform a spin dynamics (SD) simulation on a rigid lattice or a
spin-lattice dynamics (SLD) simulation, a Heisenberg-Landau function file
JijFe.cpp is also needed. If one uses the Langevin electron thermostat, the
electron heat capacity file heatcapacity_CPU.cpp (and the file heatcapac-
ity_GPU.cu if GPU is used) is also required.

3.2 Compiling and running the program

First, the program needs to be compiled. In principle, SPILADY can be
compiled using only a single command line. To simplify it further, a script
file is provided. The file that contains all the commands needed to compile
the program is called make.sh. Now one needs to convert it into an exe-
cutable file. In Unix or Linux environments, this can be accomplished by
typing the following command (which changes the nature of the file from a
text file into an executable file):

$ chmod +x make.sh

One may need to alter the content of the script file depending on the in
situ requirements or computer settings. If one is using CPUs, it is manda-
tory to use an OpenMP capable compiler. One can use, for example, g++
or icc to compile the program. For Nvidia GPU, the default compiler is
nvcc. Also, one needs to use appropriate options to compile all the files in
the current folder, for example

$ g++ -fopenmp -o spilady -DCPU -DOMP -DMD *.cpp

Option -fopenmp allows the compiler to recognize OpenMP directives in the
code. If one chooses the icc compiler, the corresponding option is -openmp.
Second, -o spilady gives the resulting executable file a name spilady. Third,
-DCPU defines the word CPU in the computer code, similarly -DOMP and
-DMD define words OMP and MD. Option -DXXX has the same effect as
adding directive #define XXX to the content of all the files.

Depending on whether one intends to run an MD, or an SD, or an SLD
simulation, the last option in the compilation command should be either
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-DMD (for molecular dynamics), or -DSDH for spin dynamics in the Heisen-
berg Hamiltonian approximation, and so on, as described in the table 3.1
below. The table gives all the currently available compilation options, apart
from the -DSLDNC option that is still under development.

Table 3.1: Compilation options
Option Type of calculation Hamiltonian

-DMD MD EAM
-DSDH SD Heisenberg
-DSDHL SD Heisenberg-Landau
-DSLDH SLD EAM + Heisenberg
-DSLDHL SLD EAM + Heisenberg-Landau
-DSLDNC SLD Noncollinear Many-body

If the program is compiled with the intention of using a Nvidia GPU, the
compilation procedure is broadly similar. We advise use of a CUDA version
no earlier than 5.5, for which the program has been tested. To compile the
program, execute the command

$ nvcc -arch=sm_35 -rdc=true -o spilady -DGPU -DMD *.cpp *.cu

In the above example, option -arch=sm_35 instructs the compiler to pro-
duce an executable file for devices with hardware architecture of version
3.5. The program has been successfully tested with option -arch=sm_20,
i.e. version 2.0, too. There is no guarantee that compilation for hardware
version earlier than 2.0 is going to be successful. If one intends to compile
the program in a way that the executable can be run in various hardware
architectures, please refer to the CUDA program manual.

Option -rdc=true is important, where -rdc is the short form of --relocatable-
device-code. It allows device codes to be placed in different files to be rec-
ognized by other codes in other files. Although this is a default feature of
CPU compilers, this option must be used for the GPU compiler nvcc. Other
compilation options are similar to those used for CPU compilations.

One should note that all the files in the current folder are going to be
compiled. If there are files that are not required for a given round of compi-
lation, it is the best to move them elsewhere out of the current folder before
executing the compilation command. In particular, this has implications for
the choice of interatomic potential. Only one single file describing a poten-
tial, say DD05.cpp, can be retained in the folder during compilation, and it
is this specific potential, described in the potential file, that is going to be
used by the compiled SPILADY program for carrying out simulations.

SPILADY can be executed by typing
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$ ./spilady

Running the program requires no extra argument.

3.3 Potential and the specific heat files

Up to two files are required to describe interactions between atoms and/or
the spins. To perform an MD or SLD simulation, a file describing interaction
between the atoms, in the form of an EAM potential - for example DD05.cpp
- is required. If one would like to perform an SD or SLD simulation where di-
rections (and magnitudes) of magnetic moments are expected to evolve, one
requires a file defining the part of the potential that depends on the direc-
tions of magnetic moments, in the form of a Heisenberg(-Landau) function
file, for example JijFe.cpp.

In an EAM potential file, the parametrization assumes that the potential
energy of interaction between the atoms has a standard EAM functional
form

U(R) =
∑

i

Fi(ρi) +
1
2

∑

i,j

Vij(Rij), (3.1)

where the effective electron density is ρi =
∑

j fij(Rij).
One needs to input the exact functional forms of Fi, fij and Vij, and their

parameters into the potential file. One should create a potential file with
functions bigf_gen, smallf_gen and pair_gen. The Dudarev-Derlet
2005 [17] potential is coded in file DD05.cpp as an example. The program
converts these functions into tables at the beginning of a simulation run for
the actual calculation of energies and forces.

In a Heisenberg-Landau function file, one needs to enter parameters for
the Heisenberg-Landau Hamiltonian:

Hspin = −1
2

∑

i,j

Jij(Rij)Si · Sj

+
∑

i

(

Ai(ρi)S2
i + Bi(ρi)S4

i + Ci(ρi)S6
i + Di(ρi)S8

i

)

. (3.2)

One needs to input exact functional forms of Jij , Ai, Bi, Ci and Di

and numerical values of parameters describing these variables into the po-
tential file. One needs to create a potential file with functions Jij_gen,
LandauA_gen, LandauB_gen, LandauC_gen and LandauD_gen.
Parameters for iron are given in JijFe.cpp as an example. The program con-
verts these functions into tables at the beginning of a simulation run for the
actual calculations of energies and forces. If one works with the Heisenberg
Hamiltonian only, the Landau coefficients can be ignored.

One needs to be careful about one point, if option #define magmom in
file control.h is switched on, the Heisenberg-Landau Hamiltonian is assumed
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to be defined in terms of magnetic moments, not spins, namely

Hspin = −1
2

∑

i,j

Jij(Rij)Mi · Mj

+
∑

i

(

Ai(ρi)M2
i + Bi(ρi)M4

i + Ci(ρi)M6
i + Di(ρi)M8

i

)

. (3.3)

All the parameters for the Hamiltonian in this case need to be re-fitted
bearing in mind that it is now the magnetic moment of an atom rather than
atomic spin that represents the evolving dynamic variable.

If one intends to use the Langevin electron thermostat, one needs to
edit files heatcapacity_CPU.cpp (and the file heatcapacity_GPU.cu if GPU
is used). One needs to edit functions Ce, Te_to_Ee and Ee_to_Te
for the CPU case. In the GPU case, one also needs to edit functions
Ce_d, Te_to_Ee_d and Ee_to_Te_d. SPILADY assumes that the
heat capacity (specific heat) per atom has the following functional form
Ce = a tanh(bTe) [44], where Te is the temperature of the electrons. One
needs to establish a relationship between the electron temperature Te and
electron energy per atom Ee, and input analytical expressions for both quan-
tities into the file.

3.4 Triclinic simulation box

One can create a triclinic simulation box according to one’s needs. Even
if a simulation box initially is a rectangle, its shape can change according
internal stresses developing in the system. If one would like to start with a
triclinic box, a configuration input file either in the SPILADY configuration
output format or in a V_sim compatible format should be supplied. Their
formats are going to be discussed below.

The box vectors are shown in Fig. 3.1, and are defined as

a = {dxx, 0, 0} (3.4)

b = {dyx, dyy, 0} (3.5)

c = {dzx, dzy, dzz} (3.6)

where a is in red, b is in blue and c is in green. Their components are given
in Å units. For all the cases, the simulation box is set up assuming periodic
boundary conditions. The program chooses the number of linked cells using
the initial box vectors. Therefore, one needs to be careful if the box is going
to be deformed severely during a simulation. In the case of compression,
one may need to increase the input variable min_length_link_cell in the
file variables.in. This will be discussed later.
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Figure 3.1: Triclinic simulation box vectors
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3.5 Options

One can switch additional options on or off in the file control.h by uncom-
menting or commenting the lines containing them. If one changes any option
in control.h, the program must be recompiled.

When one starts a new simulation, the simulation box vectors, atomic
positions, momenta and spin vectors, need to be supplied or initialized.
Therefore, one must switch on one of the options readconf, readvsim, bcc100,
bcc111, fcc100 or hcp0001. They allow the program to read in, or to create,
atomic configurations. If one is creating a new simulation box, the momenta
and spin vectors should also be initialized.

Words in bold refer to variables in file variables.in.

3.5.1 #define bcc100

By switching on this option one is constructing a body-centred cubic struc-
ture. The simulation box vectors are in the [100], [010] and [001] directions.
A unit cell has 2 atoms. The size of a unit cell is a × a × a, where a is the
lattice constant.

3.5.2 #define bcc111

By switching on this option one is constructing a body-centred cubic struc-
ture. The simulation box vectors are in the [111], [2̄11] and [01̄1] directions.
A unit cell has 12 atoms. The size of the unit cell is

√
3a ×

√
6a ×

√
2a,

where a is the lattice constant.

3.5.3 #define changestep

If this option is switched on, the size of the time step changes depending
on the maximum displacement of atoms, i.e. displace_limit, and/or the
maximum change of the angle of rotation of magnetic moments/spins, i.e.
phi_limit, over a single time step. This procedure is known as the adaptive
time step integration.

If this option is switched off, the program uses a fixed time step value step.

3.5.4 #define eltemp

If this option is switched on, one must also switch on the Langevin ther-
mostats for the lattice and/or the spins. Heat transfer in the electron sub-
system is also taken into account. Electron temperature is defined for each
linked-cell. Electronic temperature in each linked-cell changes as a result
of energy transfer. Electron temperature can be spatially inhomogeneous.
The strength of fluctuating forces in the Langevin equation depends on the
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electron temperature in each linked-cell.

If this option is switched off, Langevin forces are defined by the input tem-
perature, i.e. temperature, which is a constant.

3.5.5 #define extfield

If this option is switched on, it imposes constant external magnetic fields
on every atomic spin or magnetic moments throughout the simulation. One
needs to supply an extra input file extfield.in to specify the magnitude of
fields on each atomic site. The format of the file should look like

N
1 Hext

1x Hext
1y Hext

1z

2 Hext
2x Hext

2y Hext
2z

3 Hext
3x Hext

3y Hext
3z

...
N Hext

Nx Hext
Ny Hext

Nz

where N is the number of atoms in the entire simulation cell. External
field vectors are given in Tesla units. Sample files can be found in the ex-
amples given below.

If this option is switched off, there is no external magnetic field.

3.5.6 #define extforce

If this option is switched on, it imposes constant external forces on ev-
ery atom in the simulation box. One needs to supply an extra input file
extforce.in to specify the force on each atom. The format of the file should
look like

N
1 F ext

1x F ext
1y F ext

1z

2 F ext
2x F ext

2y F ext
2z

3 F ext
3x F ext

3y F ext
3z

...
N F ext

Nx F ext
Ny F ext

Nz

where N is the number of atoms. External force vectors are given in eV/Å
units.

If this option is switched off, there are no external forces.
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3.5.7 #define fcc100

By switching on this option one is constructing a face-centred cubic struc-
ture. The simulation box vectors are in [100], [010] and [001] directions. A
unit cell has 4 atoms. The size of a unit cell is a × a × a, where a is the
lattice constant.

3.5.8 #define hcp0001

By switching on this option one is creating a hexagonal close-packed struc-
ture. The simulation box vectors are in [1̄21̄0], [1̄010] and [0001] directions.
A unit cell has 2 atoms. The size of a unit cell is a ×

√

3/2a × c, where a
and c are the a and c hcp lattice constants.

3.5.9 #define initmomentum

If this option is switched on, it generates two different results depending on
option lattlang. If lattlang is switched on, all the momenta are initialized to
zero. If lattlang is switch off, SPILADY generates momenta randomly and
rescales the kinetic temperature to initTl. One should note that tempera-
ture defined using the kinetic energy criterion can then vary as a function of
time because the kinetic energy of atoms is converted into potential energy
and vice versa.

If this option is switched off, either readconf or readvsim should be switched
on. One should also supply input files containing information about the
momenta of atoms.

3.5.10 #define initspin

If this option is switched on, spins will be initialized as a collinear ferromag-
netic configuration. One should also supply the value of magnetic moments
i.e. mag_mom, in the Bohr magneton µB units.

If this option is switched off, either readconf or readvsim should be switched
on. One should also supply input files containing information about the
spins or magnetic moments.

3.5.11 #define inittime

If this option is switched on, the internal variable that represents the total
simulation time (not the total CPU time) will be initialized and set equal to
start_time. It can have any value. If readconf and readvsim are switched
off, this option needs to be switch on, too. There is no reverse requirement.



38 3. CONTROLS

If this option is switched off, either readconf or readvsim should be switched
on. One should also supply input files containing information about the
initial simulation time.

3.5.12 #define lattlang

If this option is switched on, the equations of motion for atoms with Langevin
thermostat are going to be used.

If this option is switched off, the equations of motion for atoms with no
thermostat are going to be used.

3.5.13 #define localcolmot

This is a sub-option to eltemp. It only applies if eltemp is switched on.

If this option is switched on, the local collective motion of atoms is treated
using locally moving frames. Theoretical details can be found in Ref. [29].

If this option is switched off, all the atoms are treated in a single static
frame.

3.5.14 #define localvol

If this option is switched on, the volume of each atom will be calculated
using the formula

Ωi =
4
3

πr3
Ω, (3.7)

where

rΩ =

∑

j 1/rij

2
∑

j 1/r2
ij

. (3.8)

Then, the value of each Ωi is re-scaled to match the total volume of the
system. One needs to supply the cut-off radius rcut_vol to determine over
what distance the neighbourhood should be included in the summation. We
suggest choosing the cut-off radius just larger than the 2nd nearest neigh-
bour distance in the bcc case, and just larger than the 1st nearest neighbour
distance in the fcc case.

If this option is switched off, the volume of each atom equals the total
volume of the simulation box divided by the number of atoms.
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3.5.15 #define magmom

If this option is switched on, atomic magnetic moments are used as input
and output variables. The magnetic part of the Hamiltonian has the form

Hspin = −1
2

∑

i,j

JijMi · Mj +
∑

i

AiM
2
i + BiM

4
i + · · · . (3.9)

If this option is switched off, atomic spins are used as input and output
variables. The spin Hamiltonian is then assumed to have the form

Hspin = −1
2

∑

i,j

JijSi · Sj +
∑

i

AiS
2
i + BiS

4
i + · · · . (3.10)

One needs to pay attention to the definitions here, and be consistent about
whether the magnetic moments or spins are used as variables. The values
of Jij , Ai, Bi, Ci and Di in file e.g. JijFe.cpp should be chosen according to
this definition. A remark for an interested developer is that all the internal
calculations in SPILADY are performed and coded in terms of atomic spins,
not magnetic moments. Magnetic moments and atomic spins are related
through the equation Mi = −gµBSi.

3.5.16 #define PRESSURE

If this option is switched on, the size of the simulation box changes isotrop-
ically according to the difference between internal pressure and the desired
pressure through a Berendsen type barostat. One needs to exercise care
in the case where simulation box undergoes contraction. Since mapping of
linked-cells is performed for the initial atomic configuration, if the linear
size of a linked-cell is smaller than the cut-off radius of the potential, some
atoms may be missed in a calculation of energies and forces. The value of
min_length_link_cell should be increased to ensure the correct choice
of the size of linked-cells. If PRESSURE is switched on, STRESS should be
switched off.

If this option is switched off, the size of the simulation box remains con-
stant, unless STRESS is switched on.

3.5.17 #define quantumnoise

This is a sub-option to lattlang. It only works if lattlang is switched on.

If this option is switched on, the classical Langevin thermostat for the lattice
part will be replaced by the Quantum Langevin thermostat developed by
J.-L. Barret and D. Rodney [39].
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If this option is switched off, the classical Langevin thermostat is used.

This option has not been tested with eltemp. A proper theoretical frame-
work incorporating the quantum thermostat into a two or three temperature
model has not yet been established. One should also note that if this option
is switched on, the program will consume a few times (about 4 to 5 times)
more memory than a conventional case. Extra care should be taken when
using a GPU, where memory limitations may present a significant issue.

3.5.18 #define readconf

If this option is switched on, the program will read in configuration file
in_config containing information about the number of atoms, initial time,
simulation box vectors, atomic positions, momenta, forces, magnetic mo-
ments/spins etc. A description of the format of the file is given in section
In/Output files.

3.5.19 #define readTe

This is a sub-option to eltemp. It only works if eltemp is switched on.

If this option is switched on, the program reads the linked cell temperatures
file, which contains values of electronic temperature in each linked-cell. De-
tails of the file format are given in section In/Output files.

If this option is switched off, the initial electronic temperature in each linked-
cell equals the input value of temperature.

3.5.20 #define readvsim

By switching on this option, the program will be prompted to read in
the V_sim compatible file in_vsim_atom containing information about
the number of atoms, the initial time, simulation box vectors, atomic po-
sitions and momenta, and file in_vsim_spin that contains information
about spin or magnetic moment vectors. A description of the format of the
files is given in section In/Output files. V_sim is free software developed
by CEA, France. It can visualize atoms and spins, and generate multi-
ple figures for producing animated movie files. It can be obtained from
http://inac.cea.fr/L_Sim/V_Sim/ .

3.5.21 #define renormalizeEnergy

This is a sub-option to eltemp. It only works if eltemp is switched on.

If this option is switched on, after every time step, the total energy of the



3.5. OPTIONS 41

whole system is renormalized numerically to the initial total energy. This
is to conserve the total energy despite the effect of numerical errors caused
by the differential equation describing the evolution of the specific heat of
electrons.

If this option is switched off, there is no renormalization of energy.

3.5.22 #define runstep

If this option is switched on, the program runs until the total number of
steps reaches no_of_production_steps.

If this option is switched off, the program runs until the total simulation
time reaches total_production_time.

3.5.23 #define spinlang

If this option is switched on, equations of motion for spins with the Langevin
thermostat applied are going to be used.

If this option is switched off, equations of motion for spins with no ther-
mostat will be used.

3.5.24 #define STRESS

If this option is switched on, the simulation box vectors will change ac-
cording to the difference between internal stresses and the desired stresses
stress_xx,stress_yx, stress_yy, stress_zx, stress_zy and stress_zz
using a Berendsen type barostat. One needs to exercise care if the simulation
box undergoes contraction. Since the mapping of linked-cells is performed
for the initial atomic configuration, if the size of a linked-cell is smaller
than the cut off radius of the potential, some atoms may be missed in the
calculation of energies and forces. The value of min_length_link_cell
should be increased to ensure the correct choice of the size of linked-cells. If
STRESS is switched on, PRESSURE should be switched off.

If this option is switched off, the size of the simulation box remains con-
stant, unless PRESSURE is switched on.

3.5.25 #define writevsim

If this option is switched on, the program will output V_sim compatible
files for visualization purposes. V_sim is free software developed by CEA,
France. It can visualize atoms and spins, and generate multiple figures for
producing animated movie files. It can be obtained from http://inac.cea.fr
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/L_Sim/V_Sim/.

If this option is switched off, there will be no output files for visualization.

3.6 Variables

Apart from the control options, one should also supply values of various
variables as input data in file variables.in. Some of the variables have de-
fault values. If there is no input for a particular variable, either a default
value will be used, or the program will not run properly, potentially gener-
ating meaningless numerical values. If file variables.in is amended but no
other files are changed, there is no need to recompile the program. Once
the program starts running, file variables.all will be generated, showing the
values of all the variables, both the input and default values, used in the
current run. It has the same format as variables.in. One could and should
check the contents of the variables.all file to ensure that input for SPILADY
program is provided properly. File variables.in should be formatted as

a_lattice 2.87
atmass 55.847
element Fe
mag_mom 2.2
out_body test
total_production_time 1e-9
...

where a_lattice is a variable representing the value of the lattice constant
in Å, and atmass is the atomic mass in atomic mass units etc. It is not
important in which order they are listed in the file.

3.6.1 a_lattice

This is the lattice constant of bcc or fcc lattices. It is also the a lattice
constant of the hcp lattice, given in Å units. Its default value is 2.83 for
bcc lattice, 3.5 for fcc lattice, and 3.629 for the hcp lattice case. It has no
default value if #define readconf or #define readvsim are switched on.

3.6.2 atmass

This is the atomic mass in the units of u (atomic mass unit). Its default
value is 55.847, which is the average, over isotopes, atomic mass of naturally
occurring iron.
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3.6.3 baro_damping_time

If one of the options #define STRESS or #define PRESSURE is switched
on, this variable gives the relaxation time for stress or pressure. The value
is given in the units od seconds. Its default value is 1 × 10−13.

3.6.4 c_lattice

This is the c lattice constant of hcp lattice, given in Å units. Its default
value is 5.796.

3.6.5 current_device

This variable is used if simulations are performed using Nvidia GPU, where
the device index of a particular GPU card should be supplied. Its default
value is 0.

3.6.6 displace_limit

If #define changestep is switched on, this is the maximum amplitude of
atomic displacement over one time step. If there is even a single atom in
the entire cell that is displaced by more than this maximum displacement
limiting value, the size of the time step step is decreased by the factor of
0.8. Otherwise, step increases by a factor of 1.05, provided that a similar
criterion is satisfied for the spin subsystem. The value of the maximum
displacement limit is given in Å units. Its default value is 0.01.

3.6.7 element

If a new atomic configuration is initialized, one should supply the element
symbol of the material for which atomistic simulations are performed, such
as Fe, W, C, Au. The element name can contain one or two characters. It
has no default value.

3.6.8 gamma_L_over_mass

If #define lattlang is switched on, it defines the damping constant divided
by the atomic mass, i.e. γl/m, for the lattice Langevin thermostat. It has
the dimensionality of seconds−1. Its default value is 6×1011s−1. Some of the
values for various materials can be obtained experimentally assuming that
the damping forces in the Langevin equation are equivalent to the effect
of electronic stopping power. For example, such experimental data can be
found in Ref. [40]. Electron stopping can also be calculated using SRIM,
but the values derived from SRIM only describe the high atomic velocity
limit.
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3.6.9 gamma_S_H

If #define spinlang is switched on, it defines the damping constant γs for
the spin Langevin thermostat associated with the Heisenberg Hamiltonian.
This quantity is dimensionless. Its default value is 8 × 10−3.

3.6.10 gamma_S_HL

If #define spinlang is switched on, it defines the damping constant γs

for the spin Langevin thermostat associated with the Heisenberg-Landau
Hamiltonian. The units are eV−1 s−1. Its default value is 5.88 × 1013.

3.6.11 in_config

If #define readconf is switched on, this is the name of the input file
required for supplying information about the number of atoms, initial sim-
ulation time, simulation box vectors, atomic positions, momenta, forces,
spin or magnetic moment vectors etc. The format of the file is described in
section In/Output files. It has no default value.

3.6.12 in_eltemp

If #define readTe and #define eltemp are switched on, this is the name
of the input file supplying information about the electronic temperatures in
each linked-cell. The format of the file is described in section In/Output
files. It has no default value.

3.6.13 in_vsim_atom

If #define readvsim is switched on, this is the name of the input file
supplying information about the number of atoms, initial simulation time,
simulation box vectors, atomic positions and momenta. The format of the
file is discussed in section In/Output files. It has no default value.

3.6.14 in_vsim_spin

If #define readvsim is switched on, this is the name of the input file
supplying information about spin or magnetic moment vectors. The format
of the file is discussed in section In/Output files. It has no default value.

3.6.15 initTl

If #define initmomentum is switched on and #define lattlang is switched
off, the program generates atomic momenta randomly and rescales kinetic
temperature to the pre-defined temperature value. Its default value is tem-
perature.
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3.6.16 interval_of_config_out

This is the interval between time steps when all the information about the
configuration of the system at a particular instant, such as atomic positions,
atomic kinetic momenta, forces, magnetic moments, is printed into an output
file. The format of the configuration file is discussed in section In/Output
files. Its default value is 1000.

3.6.17 interval_of_print_out

This is the interval between time steps when some general information, such
as the average energies, temperatures, stresses, pressure, magnetic moment,
is sent to an output file. The format of file is described in section In/Output
files. Its default value is 1.

3.6.18 interval_of_scale_pressure

If #define PRESSURE is switched on, this is the interval between time
steps when the size of the simulation box is re-scaled isotropically according
to pre-defined pressure using a Berendsen type barostat. Its default value
is 1.

3.6.19 interval_of_scale_stress

If #define STRESS is switched on, this is the interval between time steps
when rescaling of the simulation box vectors is performed according to pre-
defined stresses using a Berendsen type barostat. Its default value is 1.

3.6.20 interval_of_vsim

If #define writevsim is switched on, this is the interval between time steps
when information about positions, momenta and spins is sent to generate
V_sim compatible output files for visualization purposes. The format of the
files is described in section In/Output files. Its default value is 1000.

3.6.21 kappa_e

If option #define eltemp is switched on, this is the electron thermal con-
ductivity. This is given in the unit of Watt per meter per Kelvin, i.e. W
m−1 K−1. Its default value is 80.

3.6.22 mag_mom

If #define initspin is switched on, this is the initial value of the magnitude
of magnetic moment of all the atoms, given in µB units. Its default value is
2.2.
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3.6.23 Msteps_quantum

If #define quantumnoise is switched on, the quantum noise time-step is
Msteps_quantum times larger than the step. Its default value is 50.

3.6.24 Nfrequency_quantum

If #define quantumnoise is switched on, the noise filter is discretized
in 2× Nfrequency_quantum values over an interval [−Ωmax, Ωmax]. Its
default value is 150.

3.6.25 no_of_production_steps

If #define runstep is switched on, the program runs until the total number
of time steps reaches this value. The default value is 1000.

3.6.26 no_of_threads

If simulations are performed using Nvidia GPU, this is the number of threads
per block for a particular GPU card, which should be supplied. The value
depends on the hardware architecture of the card. It is advisable to use 32
threads for hardware versions lower than 3.5. For hardware versions higher
than or equal to 3.5, it is advisable to use 64 or 192 threads. Tests can be
performed to find the best value to achieve maximum efficiency. The default
value is 32.

3.6.27 no_of_unit_cell_x

The number of unit cells in the x direction.

3.6.28 no_of_unit_cell_y

The number of unit cells in the y direction.

3.6.29 no_of_unit_cell_z

The number of unit cells in the z direction.

The default values of no_of_unit_cell_x, no_of_unit_cell_y and no_of_unit_cell_z
are as follows:
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Option x y z
bcc100 10 10 10
bcc111 6 4 7
fcc100 10 10 10

hcp0001 10 10 10
readconf N/A N/A N/A
readvsim N/A N/A N/A

3.6.30 OMP_threads

If simulations are performed using CPUs, the number of threads for running
the program in parallel using OpenMP should be supplied. If a serial run
is intended, this value should still be supplied and should be defined as 1.
Note that its default value is 2.

3.6.31 out_body

This is the body of all the output files’ names. For example, if its value is
text, the output file for temperatures is going to be tmp-text.dat etc. It has
no default value.

3.6.32 phi_limit

If #define changestep is switched on, this is the maximum value of spin
rotation angle over one time step step. If there is even a single spin in the
entire simulation cell that rotates by more than this limiting value over one
simulation time step, the size of the time step will be reduced by multiplying
it by 0.8. Otherwise, step will increase by 1.05, provided that a similar
separate criterion is satisfied for the lattice subsystem. The value is given
in the units of Radian. Its default value is 2π/10.

3.6.33 pressure

If #define PRESSURE is switched on, this is the desired pressure, given
in GPa units. Its default value is 0.

3.6.34 random_seed

This is the seed for the random number generator. Its default value is 1234.

3.6.35 rcut_mag

If a simulation involves spin-spin interactions, this is the cut-off radius of the
exchange coupling function. The parameter is given in Å units. Its default
value is 3.75.
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3.6.36 rcut_max

This is the maximum value of rcut_pot, rcut_mag, and rcut_vol. It
needs to be input manually. The parameter is given in Å units. Its default
value is 4.1.

3.6.37 rcut_pot

If the simulation involves computing interatomic forces, this parameter de-
fines the cut-off radius for the EAM potential. It is given in Å units. Its
default value is 4.1.

3.6.38 rcut_vol

If #define localvol is switched on, this is the cut-off radius used when
calculating the local atomic volume using an approximate method described
above. The parameter is given in Å units. Its default value is 1.2a, where a
is the lattice constant.

3.6.39 min_length_link_cell

This is the minimum length of any edge of a linked-cell. The number of
linked cells in a simulation box is determined by this value. It must always
be larger than rcut_max. Its default value is rcut_max + 0.1, in Å units.

3.6.40 start_time

If #define inittime is switched on, this is the initial value of the total
simulation time. Its default value is 0.

3.6.41 step

This is the simulation time step, expressed in seconds. If #define changestep
is switched on, this is the initial value of the time step. Its default value is
1 × 10−15 s.

3.6.42 stress_xx

If #define STRESS is switched on, this is the desired stress σxx, in GPa
units. Its default value is 0.

3.6.43 stress_yx

If #define STRESS is switched on, this is the desired stress σyx, in GPa
units. Its default value is 0.
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3.6.44 stress_yy

If #define STRESS is switched on, this is the desired stress σyy, in GPa
units. Its default value is 0.

3.6.45 stress_zx

If #define STRESS is switched on, this is the desired stress σzx, in GPa
units. Its default value is 0.

3.6.46 stress_zy

If #define STRESS is switched on, this is the desired stress σzy, in GPa
units. Its default value is 0.

3.6.47 stress_zz

If #define STRESS is switched on, this is the desired stress σzz, in GPa
units. Its default value is 0.

3.6.48 temperature

This is the thermostat temperature for both spins and the lattice atoms,
given in Kelvin units. Its default value is 300.

3.6.49 total_production_time

If #define runstep is switched off, the program runs until the total simula-
tion time reaches this value. This parameter is given in seconds. Its default
value is 1 × 10−13.

3.6.50 vsim_prec

If #define writevsim is switched on, this is the precision of each output
value in V_sim compatible output files. Since these files are created for
visualization purposes, the output values do not need to have high precision,
as this saves output time and disk space. Its default value is 4.

3.7 In/Output files

In/Output files and their formats are described in this section. All the
output files have the same common name as the value of out_body. For
the convenience of our discussion here, we set out_body = xxx. There is
a limit of 256 characters on the length of this variable.
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3.7.1 enr-xxx.dat

This is a file that accumulates data on energies per atom for every inter-
val_of_print_out step. The format is as follows:

Column 1 2 3 4 5 6 7
current step total time P.E. K.E. Espin Ecorr Eelectron

where Espin and Ecorr are the energies corresponding to Hamiltonians Hspin

and Hcorr. The respective columns only appear if one considers the corre-
sponding degrees of freedom in simulations. For example, if one performs a
lattice-electron simulation, the format of the file is:

Column 1 2 3 4 5
current step total time P.E. K.E. Eelectron

All the energies are given in the eV per atom units.

3.7.2 prs-xxx.dat

This is a file that accumulates data on pressure per atom for every inter-
val_of_print_out step. The format of the file is as follows:

Column 1 2 3 4 5 6 7 8
current step total time dxx dyx dyy dzx dzy dzz

9 10
density pressure

The simulation box vectors are in Å units, and pressure is in GPa units.

3.7.3 str-xxx.dat

This is a file that accumulates data on stresses per atom for every inter-
val_of_print_out step. The format is as follows:

Column 1 2 3 4 5 6 7 8
current step total time dxx dyx dyy dzx dzy dzz

9 10 11 12 13 14 15 16
density

∑

α σαα/3 σxx σyy σzz σxy σzy σzx

The simulation box vectors are in Å units, and stresses are in GPa units.
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3.7.4 tmp-xxx.dat

This is a file that accumulates data on temperatures of various subsystems
in the simulation box for every interval_of_print_out step. The format
is as follows:

Column 1 2 3 4 5 6
current step total time Tl Ts T ′

s Te

where Tl is the lattice temperature, Ts is the spin temperature calculated
using equation (2.11), T ′

s is the spin temperature calculated using equation
(2.14), and Te is the electronic temperature. If longitudinal spin fluctua-
tions are not treated, only Ts is going to be calculated. Otherwise, both Ts

and T ′
s are going to be calculated. The respective columns only appear if

one considers the corresponding degrees of freedom in a simulation. All the
temperatures are given in Kelvin units.

3.7.5 spn-xxx.dat

This file accumulates data on average values of spins and magnetic moments
for every interval_of_print_out step. The format is as follows:

Column 1 2 3 4 5 6
current step total time 〈Six〉 〈Siy〉 〈Siz〉 |〈Si〉|

6 7 8 9
〈Mix〉 〈Miy〉 〈Miz〉 |〈Mi〉|

Note that Mi = −gµBSi, where spin is dimensionless. Magnetic moments
have the dimensionality of Bohr magneton µB .

3.7.6 cel-xxx_nnnn.dat

This file contains data on temperatures in each linked cell at a particular
moment of time. This file will be generated only if option #define eltemp
is switched on. The SPILADY program then produces an output file for
every interval_of_config_out step. An extra part of the file name is
then going to be added. nnnn spans values from 0000 to 9999. It represents
the sequence of output files. After initialization, before any real calculation,
a file cel-xxx_0000.dat is produced. Then, the index increases by 1 for each
new output file. When the program reaches the desired total number of
production steps or production time, a file cel-xxx_9999.dat is generated,
regardless of the previous output file numbering. The format is as follows
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1 2 3 4 5 6 7
1 no. of cells total time
2 dxx dyx dyy

3 dzx dzy dzz

4 cell 1 x cell 1 y cell 1 z T1e T1l T1s T ′
1s

5 cell 2 x cell 2 y cell 2 z T2e T2l T2s T ′
2s

...

The first line is the total number of linked cells and the total time. The
second and third lines are the simulation box vectors. Starting from the
fourth line, it is the x, y and z coordinates of the centre of linked-cell i, fol-
lowed by the local electron temperature Tie, local lattice temperature Til and
the local spin temperatures Tis and T ′

is calculated using equations (2.11) and
(2.14), respectively, for each linked-cell. These columns only appear when
one considers the relevant degrees of freedom in a simulation.

If #define readTe and #define eltemp are switched on, this file can
be used as input for a new simulation, which supplies information about
local electronic temperature. One should define the file name using variable
in_eltemp.

3.7.7 con-xxx_nnnn.dat

This file contains information about the atomic configuration at a given
moment of time. The program produces an output file for every interval
_of_config_out step. An extra part of the file name is added. The value
of nnnn spans the interval from 0000 to 9999. It represents the sequence of
output files. After initialization, before any real calculation, a file named
con-xxx_0000.dat is generated. Then, the index is increased by 1 for each
output file. When the program attains the decided total production steps
or production time, a file con-xxx_9999.dat is generated, regardless of the
previous output file numbering. The format is as follows

1 2 3 4 5 6 7 8
1 no. of atoms total time type
2 dxx dyx dyy

3 dzx dzy dzz

4 1 element1 R1x R1y R1z p1x p1y p1z

5 2 element2 R2x R2y R2z p2x p2y p2z
...
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9 10 11 12 13 14 15 16 17
1
2
3
4 F1x F1y F1z σ1,xx σ1,yy σ1,zz σ1,xy σ1,zy σ1,zx

5 F2x F2y F2z σ2,xx σ2,yy σ2,zz σ2,xy σ2,zy σ2,zx
...

18 19 20 21 22 23 24 25 26 27
1
2
3
4 ρ1 (K.E.)1 (P.E.)1 S1x S1y S1z |S1| HH1x HH1y HH1z

5 ρ2 (K.E.)2 (P.E.)2 S2x S2y S2z |S2| HH2x HH2y HH2z
...

28 29 30 31 32 33
1
2
3
4 HL1x HL1y HL1z Espin,1 Ecorr,1 Ω1

5 HL2x HL2y HL2z Espin,2 Ecorr,2 Ω2
...

The first line is the total number of atoms, the total time and the type
of simulation, i.e. MD, SDH, SDHL, SLDH or SLDHL. The second and
third lines are the simulation box vectors. Starting from the fourth line,
it gives information about atom i, where i is the index of an atom, ele-
ment symbol, atomic position, momentum, force, stresses, effective electron
density, kinetic energy, potential energy, spin vector, magnitude of the spin
vector, the Heisenberg part of the effective field, the Landau part of the
effective field (including the correction term), the energy corresponding to
Hspin, the energy corresponding to Hcorr and the local atomic volume. If
#define magmom is switched on, spin vectors are replaced by magnetic
moments. The relevant columns only appear if the corresponding degrees of
freedom are included in a simulation.

If #define readconf is switched on, this file can be used as an input file
for a new simulation, which supplies information about atoms/spins. One
should define the file name using variable in_config. The total time in
the first line of the file will be used as the initial simulation time, if #define
inittime is switched off. One should also note that file output from an MD
simulation can only be used as input for another MD simulation (not for an
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SD or SLD simulation). The same applies to SD and SLD simulations.

3.7.8 vsm-xxx_nnnn.ascii/.spin/.dat

If #define writevsim is switched on, the program generates files con-
taining information about atoms at a given moment of time. They are
produced in a V_sim readable format for visualization purposes for every
interval_of_vsim step. An extra part of the file name is added. The
value of nnnn spans interval from 0000 to 9999. It represents a sequence
of output files. After initialization, before any real calculation, files vsm-
xxx_0000.ascii/.spin/.dat are generated. Then, the file index increases by 1
for each output file. When the program attains a pre-defined number of to-
tal production steps or production time, files vsm-xxx_9999.ascii/.spin/.dat
are generated, regardless of the previous output file numbering.

vsm-xxx_nnnn.ascii

This file allows V_sim to visualize atoms. The format is as follows

1 2 3 4 5 6 7
1 no. of atoms total time
2 dxx dyx dyy

3 dzx dzy dzz

4 R1x R1y R1z element1 p1x p1y p1z

5 R2x R2y R2z element2 p2x p2y p2z
...

The first line is the total number of atoms and the total time. The
second and the third lines are the simulation box vectors. Starting from
the fourth line, it gives information about atom i, specifying its position,
element symbol, and kinematic momentum.

vsm-xxx_nnnn.spin

This file allows V_sim to visualize spins. It is not mandatory to supply this
file. The file vsm-xxx_nnnn.ascii should also be supplied in the case if spin
visualization is intended. The format is as follows

1 2 3
1 no. of atoms
2 |S1| θ1 φ1

3 |S2| θ2 φ2
...
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The first line is the total number of atoms. Starting from the second line,
the file contains information about spin i in spherical coordinates, which is
the magnitude of the spin vector, and its polar and azimuthal angles θ and
φ. Angles θ and φ are given in degrees. If #define magmom is switched
on, the magnetic moment of an atom is used as an output variable instead
of an atomic spin.

vsm-xxx_nnnn.dat

This file allows use of a user-defined color scheme in V_sim. It is not manda-
tory to supply this file. The file vsm-xxx_nnnn.ascii should also be supplied.
The format is as follows

1
1 (P.E.)1

2 (P.E.)2
...

Starting from the first line, it gives information about the potential en-
ergy of an atom. In the case of spin dynamics with/without longitudinal
fluctuations, the format is

1
1 |S1|
2 |S2|
...

It gives the magnitudes of the spin vectors (or magnetic moments if
#define magmom is switched on). One could change the output into
K.E. (kinetic energy), stresses, etc. by editing the source code.

If #define readvsim is switched on, these files can be used as input files
for a new simulation, which supplies information about atoms/spins. One
could assign values to variables in_vsim_atom = vsm-xxx_nnnn.ascii and
in_vsim_spin = vsm-xxx_nnnn.spin. The total time in the first line of
vsm-xxx_nnnn.ascii will be used as the initial simulation time, if #define
inittime is switched off.

It should be noted that these files are only in V_sim readable format. It
does not mean that SPILADY can read all the files in conventional V_sim
format. Besides, since these files are produced as output for visualization
purposes, the default value of vsim_prec = 4. If one intends to use them as
input files for a new simulation, one should increase the value of vsim_prec
to 16.
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4

Examples

“Failures, repeated failures, are finger posts on the road to achieve-
ment. One fails forward toward success.”

– C. S. Lewis (1898 - 1963)

In this section we are going to describe applications of SPILADY. They
use parameters and the functional form of the EAM potential for pure
iron. The many-body potential [17], the exchange coupling function [24],
the Landau coefficients [34], and electron heat capacity [44] are already de-
fined in files DD05.cpp, JijFe.cpp and heatcapacity_CPU.cpp or heatcapac-
ity_GPU.cu. There is a small adjustment in the value of Jij in comparison
to Ref. [24]. This is to make the results agree better with the experimen-
tal Curie temperature TC . There are some other potential files in folder
potential.

We advise the users to try a CPU version of SPILADY before progressing
to a GPU implementation. This is because the source code is more readable
in the CPU version. We also advise use of CPUs, instead of GPUs, for
spin dynamics and spin-lattice dynamics cases, if a system is smaller than
54,000 spins (atoms). This is because the parallel algorithm based on the
Suzuki-Trotter decomposition only performs parallel calculations at the level
of linked-cells, not atoms. Due to the limited number of linked-cells within a
non-interacting group, the powerful massive parallel environment of a GPU
cannot be fully utilized if the total number of atoms is relatively small. On
the other hand, if one is interested in a million atoms scale simulation, GPU
is more efficient. One should do the testing on one’s local computer.

We also advise creation of a folder to keep all the original files, and
copy them to a working examples folder, so that input and output files and
potential files for a particular example are not mixed up with other examples.
We further recommend reading all the files in the example folders, especially
the files variables.in and control.h, before starting a simulation, to become
familiar with the meaning of input parameters.

57
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Figure 4.1: A single magnetic moment with magnitude of 2.2µB interacting
with external magnetic field of 100 Tesla. From left to right, and top to
bottom, they are snapshots corresponding to t =0fs, 50fs, 100fs, 150fs, 200fs
and 250fs.

When one runs SPILADY, one can plot the data accumulated in the out-
put files. Temperatures, magnetization, pressure, stresses and energies can
be plotted as functions of time using any plotting software, for example gnu-
plot in Linux or Origin in Windows. For visualizing atoms and spin, we rec-
ommend using V_sim, which has been developed at CEA, France. It is free
software, which can be downloaded from http://inac.cea.fr/L_Sim/V_Sim/
.

4.1 Non-interacting magnetic moment

The first example illustrates rotation of a single magnetic moment inter-
acting with external magnetic field. All the necessary files are in folder
example1. One needs to copy them into the working folder, and compile
and run the program as described in previous chapters.

A single magnetic moment with magnitude of 2.2µB is placed in a sim-
ulation box. It interacts with external magnetic field of 100 Tesla point-
ing in the z direction. The angle between the external field and magnetic
moment is 30 degrees. The initial configuration can be observed in vsim-
example1.ascii and vsim-example1.spin. The external field is controlled by
file extfield.in. Although there is no spin-spin interaction, one still needs to
supply the spin-spin interaction file Jij0.cpp for a spin dynamics simulation,
where function Jij_gen only returns zero values.
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Fig. 4.1 shows rotation of magnetic moment in the anti-clockwise direc-
tion. We should note that the rotation direction of magnetic moments is op-
posite to that of atomic spins, since they are related through Mi = −gµBSi.
Option #defined magmom is switched on here. A movie of this is in folder
example1.

4.2 Interacting spins - Heisenberg Hamiltonian

The second example shows a spin system interacting through the Heisenberg
Hamiltonian. All the necessary files are in example2. We are now working
with atomic spins, not atomic magnetic moments, so that option #defined
magmom is switched off. Function Jij_gen in JijFe_fix_lattice.cpp is the
exchange coupling Jij of the Heisenberg Hamiltonian for atomic spins Si.
Parameters of the simulation correspond to those of bcc iron.

A bcc lattice with 2000 spins is set up. We have input files vsim-
example2.ascii and vsim-example2.spin. The directions of spin vectors are
assigned at random. The simulation does not impose any thermostat on
the spin system. We work with the microcanonical spin ensemble. The
magnitudes of atomic spins are fixed at 2.2/g, where g = 2.0023 is the
electronic g-factor. From the output file tmp-2000_interact_spins.dat, one
can see that the spin temperature calculated according to Eq. (2.14) is ap-
proximately 233K. Its value is fluctuating, since only either temperature or
energy can be kept constant, but not both.

Fig. 4.2 shows that spins rotate in the clockwise direction. There is no
external magnetic field. Spins rotate because there are effective Weiss fields
acting on them. The effective fields result from the interaction of spins with
other, neighbouring, spins. One can observe that the speed of rotation of
atomic spins in iron is about 10 to 15fs per cycle. A movie of it is in folder
example2.

4.3 Thermalization - Heisenberg-Landau Hamilto-
nian

The third example illustrates the dynamics of thermalization of an interact-
ing spin system described by the Heisenberg-Landau Hamiltonian. All the
necessary files are in example3. A bcc lattice with 16000 spins is set up. We
do not have input configuration files in the example. We initialize the lat-
tice and spin configuration via variables.in and control.h. All the spins are
initially collinear. The Langevin thermostat is applied to the spin system.

Fig. 4.3 illustrates the dynamics of thermalization of the spin system
interacting through the Heisenberg-Landau Hamiltonian. The figure was
plotted using gnuplot. One can type the following commands in the gnuplot
environment after completing the simulation.
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Figure 4.2: A bcc lattice with 2000 interacting spins. From left to right,
and top to bottom, the snapshots correspond to 0fs, 2fs, 4fs, 6fs, 8fs, 10fs,
12fs, 14fs, 16fs, 18fs, 20fs and 22fs.
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Figure 4.3: A fluctuating spin system with longitudinal degrees of freedom
is thermalized from a collinear ferromagnetic perfect lattice configuration to
300K. The red line shows spin temperature calculated using equation (2.11).
The green line is the spin temperature calculated using equation (2.14).
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Figure 4.4: A histogram of magnitudes of atomic spins of a system with
16000 spins at 300K.

gnuplot> plot "tmp-16000_interacting_spins_HL_0K_to_300K.dat" us-
ing 2:3, "" using 2:4

The command means that the second column of the data file is used as x-
coordinates and the third or the fourth columns are treated as y-coordinates.

Fig. 4.3 shows how spin temperatures vary as functions of time. Spin
temperatures are calculated using equation (2.11) and (2.14). We note that
both equations are only valid if the system is in thermal equilibrium. In the
case of non-equilibrium, the values derived from equations for the tempera-
ture can only be treated as estimates. The figure shows that the system is
heated up to 300K as prescribed. Atomic spins are non-collinear at a finite
temperature.

Fig. 4.4 shows a histogram of magnitudes of atomic spins. The his-
togram shows that the magnitudes of spins are no longer constant, and they
exhibit a considerable spread of their values. All the atomic spins are ini-
tialized with the magnitude of 2.2/g, where g = 2.0023. When the system
is in thermal equilibrium, magnitudes of spins fluctuate, this is a direct con-
sequence of dynamics associated with the longitudinal (Landau) part of the
spin Hamiltonian.

4.4 MD - Stresses control

The fourth example is a molecular dynamics simulation. It illustrates how to
control internal stress components by changing the simulation box vectors.
A bcc lattice with 2000 atoms is set up in a cubic box. We put σxx =
σyy = σz = 0GPa, σzx = σzy = 0.1GPa and σxy = −0.2GPa in variables.in,
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Figure 4.5: Components of the simulation box vectors plotted as functions
of time.

and #defined STRESS is switched on in control.h The simulation box is
thermalized from 0K to 300K using the Langevin thermostat.

Fig. 4.5 shows how the components of the simulation box vectors vary as
functions of time. Fig. 4.6 illustrates how internal stresses reach pre-defined
values at about 1ps. Box vectors components dyx, dzx and dzy deviate from
zero, in order to impose the desired stresses onto the box. The simulation
box is no longer cubic, it now has a triclinic shape.

4.5 Thermalizing a spin-lattice system

The fifth example shows how to thermalize a spin-lattice system with longi-
tudinal fluctuations from a collinear ferromagnetic perfect lattice configura-
tion to 300K. The size of the simulation box varies according to its internal
pressure.

A bcc iron configuration with 16,000 atoms has been set up according to
input files. There are 20 × 20 × 20 unit cells, where each unit cell contains
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Figure 4.6: Average stresses plotted as functions of time.

2 atoms. Values of damping constants γl and γs are the same as in Refs.
[29, 30].

Fig. 4.7 shows temperature changes, as a function of time, for Tl, Ts and
T ′

s. It shows clearly that all the temperatures reach 300K eventually, but
over different timescales, which depend on the values of damping parameters.

If #defined PRESSURE is switched on, the size of the simulation box
relaxes according to its internal pressure. In Fig. 4.8, internal pressure has
a positive value initially. It means that there are forces that try to expand
the cell. The lattice constant, which can be obtained by dividing the length
of a simulation box edge by the number of unit cells on that edge, increases
and reaches a maximum. At around the same time, pressure drops to zero,
which is the pre-defined value of pressure in variables.in. The simulation
box is still heating up until it reaches 300K. The length of the box edges
reaches equilibrium eventually.

4.6 SLD - Atomic spin chain

The sixth example illustrates the dynamics of an atomic spin chain. We show
that SPILADY can deal with an arbitrary crystal structure. A spin chain
containing 10 atoms is placed in a box with periodic boundary condition.
The input configuration file is in the SPILADY format.

The atomic spin chain is thermalized from 0K to 50K. Both the spins
and the atoms are heated up. Fig. 4.9 shows snapshots of the spin chain
at 0ps, 1ps and 10ps. The atoms and spin vectors deviate from their initial
values due to thermal excitations.

If you can reproduce the results shown in the above examples, you are now
able to run SPILADY successfully. You may now try to change the val-
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Figure 4.7: A spin-lattice system with longitudinal fluctuations is thermal-
ized from a collinear ferromagnetic perfect lattice configuration to 300K.

ues of variables or try the GPU mode of SPILADY. Below, we give two
more examples. They require a more advanced level of understanding of the
program. Modification of the source code is required.

4.7 Laser pulse demagnetization

The seventh example is a little more challenging. This simulation is limited
to the CPU version only. We are going to heat up the system by a laser pulse.
This could be mimicked by adding extra energy to the electronic subsystem,
assuming that all the energy from a laser pulse is absorbed by the electrons.
A Gaussian form of the energy pulse is assumed. In our previous work, we
performed a similar simulation on a spin-lattice system without longitudinal
fluctuations. Detailed discussions of the physical content of the method and
technique can be found in [29]. We are going to perform a simulation on a
spin-lattice system with longitudinal fluctuations.

We need to edit a small part the of source code. All the files that
require editing are in folder example7. Parts of the source code have been
modified. They are spilady.cpp and prototype_CPU.h, and a new file laser_
demagnetization_CPU.cpp. One may just copy these files into a working
folder, and compile and run the program.

The file laser_demagnetization_CPU.cpp contains a function describ-
ing how the energy pulse is absorbed by the electronic subsystem. When-
ever a new function is added to the program, one needs to put its pro-
totype in prototype_CPU.cpp. If it is a GPU device code, its prototype
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Figure 4.8: (Top) Change of internal pressure in the simulation box dur-
ing thermalization to 300K. (Bottom) Change of the lattice constant as a
function of time.
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Figure 4.9: A spin chain thermalizing from 0K to 50K. From left to right,
snapshots correspond to 0ps, 1 ps and 10 ps.
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Figure 4.10: Temperatures change as a function of time, assuming that a
laser pulse occurs at around 1ps.

needs to be put in prototype_GPU.cu. We have already inserted function
laser_demagnetization _CPU() in spilady.cpp, and added it to proto-
type_CPU.cpp as shown in the files in folder example7.

We use a final output configuration file of a spin-lattice system at 300K
with 16000 atoms/spins as the input configuration file, and switched on
#define eltemp. We now deal with the spin-lattice-electron system. The
total energy is conserved apart from the extra energy delivered by the laser
pulse. The laser pulse comes at around 1 ps. In Fig. 4.10, we see a sharp
peak of Te at around 1ps, which is due to the laser pulse. T ′

s responds
quickly to Te, because electrons and longitudinal spin degrees of freedom
are strongly coupled. Ts responds a little more slowly. This is because Ts

primarily describes relaxation of spin-spin directional collective excitations.



4.8. COMPRESSIVE WAVE 67

0 1 2 3 4 5

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95
M

ag
ne

tiz
at

io
n 

(
B
)

Time (ps)

Figure 4.11: Demagnetization and recovery process, where a laser pulse
occurs at around 1ps.

They take a slightly longer time than longitudinal fluctuations to absorb
energy and achieve maximum entropy. Tl is the slowest evolving component
of temperature, since coupling between electrons and the lattice is compar-
atively weak.

In Fig. 4.11, magnetization is plotted as a function of time on the same
scale as in Fig. 4.10. It drops significantly at the point when a laser pulse is
introduced. Then, it gradually recovers. However, it does not recover fully
back to its original value, because the temperature of the system increases
from 300K to about 450K.

4.8 Compressive wave

Similar to the above example, the eighth example requires modification of
SPILADY source code. This simulation is limited to the GPU version only.
We introduce a compressive wave by reducing the length of the simulation
box in the z direction, which essentially has the same effect as adding soft
pistons at both sides of the box. Detailed discussions of the physical content
of the method and technique can be found in Ref. [29]. Again, we are
going to perform a simulation of a spin-lattice system with longitudinal
fluctuations.

All the edited files are in folder example8. Parts of the source code have
been modified. The amended files are spilady.cpp and prototype_CPU.h,
and there is a new file compressive_wave_GPU.cu. One may just copy
these files into a working folder, and compile and run the program. File
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Figure 4.12: Average momentum across the simulation box at 1, 3, 5, and 8
ps.

compressive_wave_GPU.cu contains a function describing how to introduce
the compressive wave.

We use the final output configuration file of a spin-lattice system at 300K
with 30 × 30 × 550 unit cell, i.e. 990000 atoms/spins, as the input config-
uration file, and switch on #define eltemp and #define localcolmot.
Because of the large size of the box, it may take up to a week of computer
simulation time before the system reaches 10ps. One could run this example
in the MD mode, which can substantially reduce the computation time.

Fig. 4.12 shows the average momenta calculated as a function of position
across the simulation box in planes normal to the z direction at 1, 3, 5 and
8 ps. An analysis file cal_momentum.f is included in the example folder
for producing a similar figure. We can see a compressive wave propagating
along the box at a constant velocity. It results from the initial compression
occurring at the edges of the box.

4.9 Collision cascade

The ninth example is a collision cascade simulation. We create an atomic
configuration of bcc iron containing 22184 atoms at 300K. There are 48 ×
48 × 48 unit cells, where each unit cell contains 2 atoms. We adopt the
spin-lattice-electron model with longitudinal spin fluctuations, and perform
simulations using the notion of local collective motion of atoms. Adaptive
time-step is limits the maximum displacement of an atom to 0.01Å over a
single time-step. The initial values of time-step is 1 attosecond.
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Figure 4.13: The lattice Tl, spin Ts and electron Te temperatures during a
collision cascade simulation. An atomic configuration of bcc iron containing
221184 atoms. The kinetic energy of the primary-knock-on atom (PKA) is
5keV. It is moving towards [1 2 3] direction.

First, we thermalize spin and lattice subsystems to 300K. Then the out-
put configuration file is edited, with the momentum of one of the atoms
assigned a new value so that its kinetic energy is now 5keV and it moves
in the [1 2 3] direction. This particular atom is identified as the primary-
knock-on atom (PKA). Then, we restart the simulation using the edited
configuration file as input. All the files for this simulation run are in folder
example9.

Option #define eltemp is now switched on. Electron temperature
in each linked cell is initialized to 300K. Different linked cells can be at
different temperatures. Exchange of energy between linked cells is governed
by the thermal conductivity constant κe. Energy exchanges between the
spin, lattice and electron subsystems occur through Langevin thermostats
and spin-lattice coupling terms in the Hamiltonian. Now, the spin-lattice-
electron system is treated as an isolated micro-canonical system. The total
energy is conserved.

The lattice Tl, spin Ts and electron Te temperatures during the collision
cascade simulation are shown in Fig. 4.13. We see that Tl is 474K at time
t = 0, instead of 300K. This is because Tl is calculated from the total kinetic
energy of all the atoms in the system. The 5keV PKA contributes to the
total kinetic energy, and hence to the value of Tl. The PKA collides with
other atoms, transferring its energy, through simple ballistic collisions. This
is seen in the form of sudden steps in the Tl curve before 0.1ps. The electron
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subsystem absorbs energy from the PKA through dissipative electron stop-
ping. Energy within the electron subsystem is redistributed by diffusion.
At the same time, it heats up the spin subsystem. At about 0.1ps, when
the PKA gradually slows down, the spin-lattice-electron system starts equi-
librating thermally. All the three temperatures are converging to a same
value after approximately 10ps.

If you have been able to reproduce all of the above examples, congratu-
lations, you should now be able to perform simulations using this SPIn-
LAttice-DYnamics program, SPILADY.
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