
PHYSICAL REVIEW B 83, 134418 (2011)

Langevin spin dynamics
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Microscopic stochastic Langevin-type spin dynamics equations provide a convenient and tractable model
describing the relaxation of spin and spin-lattice ensembles. We develop a robust and numerically stable algorithm
for integrating the Langevin spin dynamics equations, and explore, both numerically and analytically, a range of
applications of the method. We show that the algorithm conserves the magnitude of the spin vector irrespectively
of the amplitude of the thermal noise. Using the Furutsu-Novikov theorem, we derive a system of deterministic
differential equations for the ensemble-average moments of solutions of the Langevin spin dynamics equations,
and explore the dynamics of relaxation of a spin ensemble toward the equilibrium Gibbs distribution. Analytical
solutions of the moments equations make it possible to estimate the time scales of spin thermalization and
spin-spin self-correlation, which we investigate as functions of the damping parameter and temperature.
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I. INTRODUCTION

Langevin dynamics is a subject with long history, with the
treatment of Brownian motion being among the well known
applications of the method.1–3 By introducing fluctuation and
dissipation forces in the Hamiltonian equations of motion,
one can model the dynamics of relaxation in an ensemble of
interacting particles evolving toward thermal equilibrium. The
relation between the stochastic and dissipative Langevin terms
stems from the fluctuation-dissipation theorem (FDT),1–3 in
accord with the requirement that in thermal equilibrium the
population of states in the phase space is given by the Gibbs
distribution. There is an extensive literature on the numerical
integration algorithms for Langevin dynamic systems of
interacting particles4–9 and on the statistical mechanics aspects
of the problem.1–3

A similar approach can be applied to the investigation
of a spin ensemble. In a method proposed by Brown,10 a
system of spins is driven toward equilibrium by suitably
chosen fluctuation and dissipation terms. The treatment also
makes it possible to model equilibrium thermal fluctuations
associated with the dynamics of either individual atomic spins
or the magnetic moments of small particles.11–17 Thermal
magnetic fluctuations are generic phenomena characterizing
all nanoscale magnetic systems and devices.

The recently developed spin-lattice dynamics simulation
approach,18 incorporating both the atomic spin and lattice
degrees of freedom, shows that mechanical properties of
common materials such as steels, as well as dislocation and
radiation defect structures formed in iron and steels under
irradiation, are closely related to their temperature-dependent
magnetic properties.19–23 A striking example illustrating the
interplay between magnetism and structural stability is the
bcc-fcc α-γ structural phase transformation in iron-based
alloys that, according to a recent study,24 stems from the free
energy change associated with thermal magnetic excitations,
also investigated in Refs. 25 and 26.

Integrating Langevin spin dynamics equations proves more
difficult than integrating Langevin equations for particles. Nu-
merical integration algorithms described in the literature11–17

are either subject to constraints limiting their application11,12

or contain mathematical inconsistencies.13,14 Some literature
sources do not provide the necessary mathematical detail

required for the implementation of an algorithm.15–17 Further-
more, for all the algorithms it proves difficult to give a reliable
assessment of the numerical error associated with the inte-
gration time step. Similarly, understanding of the connection
between numerical realisations of stochastic spin dynamics
and the statistical mechanics aspects of the method remains
limited.11 The difficulty partially stems from the fact that until
recently there was no recipe for evaluating the temperature of
a dynamic spin ensemble from the microscopic spin vector
variables characterizing an instantaneous configuration of the
spin system. A solution to the problem has now been found.27

In this paper, we derive a simple, robust, and numerically
stable algorithm for integrating the stochastic Langevin spin
dynamics equations. The algorithm is based on the Suzuki-
Trotter decomposition (STD) method applied earlier to the
integration of deterministic spin dynamics equations.28–32 To
investigate the microscopic aspects of spin relaxation and its
dependence on the parameters characterizing the spin system,
we derive a set of equations for the statistical moments
of solutions of Langevin spin dynamics equations. Using
the Furutsu-Novikov theorem,33–36 we convert the stochastic
Langevin equation for an individual spin into an infinite set of
coupled deterministic first-order differential equations for the
statistical moments of the evolving probability distributions.
We prove equivalence between the stochastic and the moments
approaches by exploring spin thermalization and the dynamics
of relaxation of spin-spin self-correlation functions. We also
give analytical estimates for the time scales of relaxation
processes and show that they agree well with direct numerical
solutions of Langevin spin dynamics equations.

II. INTEGRATION ALGORITHM

For a system of interacting spins described by a Hamiltonian
H(S1,S2, . . . ,SN ), the Langevin equation of motion for an
individual spin Si has the form12,27,37

dSi

dt
= 1

h̄
[Si × (Hi + hi) − γ Si × (Si × Hi)], (1)

where Si = Si(t) is a spin vector, Hi(t) = −∂H/∂Si is the
effective field acting on spin Si , and γ is a dimensionless
damping parameter. hi = hi(t) is a delta-correlated fluctuating

134418-11098-0121/2011/83(13)/134418(9) Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.134418


PUI-WAI MA AND S. L. DUDAREV PHYSICAL REVIEW B 83, 134418 (2011)

effective magnetic field, satisfying the conditions 〈hi(t)〉 = 0
and 〈hiα(t)hjβ(t ′)〉 = μδij δαβδ(t − t ′). Subscripts α and β

denote the Cartesian components of a vector. Parameters
γ and μ are related via the FDT.1,2,10 In thermal equi-
librium, by identifying the energy distribution for the spin
system with the Gibbs distribution, we find the following
fluctuation-dissipation relation (FDR)10,27 between parameter
μ characterizing the magnitude of random fluctuations of hi(t)
and the dissipation parameter γ , namely μ = 2γh̄kBT .

Equation (1) is a part of a set of N coupled first-order
differential equations describing the evolution of an ensemble
of interacting spins.18,27 In this paper we focus on the devel-
opment of an integration algorithm for spin and spin-lattice
dynamics, and in what follows consider a case where Eq. (1)
describes the dynamics of an individual spin Si , interacting
with external magnetic field Hi . Omitting index i, we assume
that the magnitude and the direction of H do not depend on
time t . In this limit Eq. (1) acquires the form

dS
dt

= 1

h̄
[S × (H + h) − γ S × (S × H)]. (2)

While this equation provides the simplest possible model for
Langevin spin dynamics, its solution still cannot be found
in an explicit analytical form similar to that available for
the case of Langevin dynamics of particles.3,38 Fortunately,
it appears possible to develop an efficient and accurate
numerical approach to solving Eq. (2), which is based on the
Suzuki-Trotter decomposition (STD).28 Integration algorithms
involving the STD are known to accumulate small numerical
error over long intervals of time, due to their symplectic
nature.4,5,28

Consider a first-order differential equation of the form

dx
dt

= (Â + B̂)x, (3)

where x is a vector variable, and Â and B̂ are operators acting
on x. The formal solution of the above equation is

x(τ ) = exp[(Â + B̂)τ ]x(0). (4)

Using the STD, we transform the evolution operator
exp[(Â + B̂)τ ] as follows:28

exp[(Â + B̂)τ ] ≈ exp(Âτ/2) exp(B̂τ ) exp(Âτ/2). (5)

The numerical error associated with this transformation is
of the order of O(τ 3). The computational benefit of this

decomposition is that it reduces the problem of finding the full
evolution operator exp[(Â + B̂)τ ] to the problem of finding
two simpler evolution operators exp(Âτ ) and exp(B̂τ ), both
of which in the case of Langevin spin dynamics can be found
analytically, leaving the only source of numerical error to be
the STD itself.4,5,28

In our case, we separate Eq. (2) into the deterministic and
stochastic parts by rewriting it in the following form:

dS
dt

= (L̂d + L̂s)S, (6)

where

L̂dS = 1

h̄
[S × H − γ S × (S × H)], (7)

L̂sS = 1

h̄
[S × h]. (8)

The deterministic part L̂d contains the spin rotation and the
dissipation terms, whereas the stochastic part L̂s contains only
the fluctuation field term.

First, we solve the deterministic equation (7). Without loss
of generality, we choose the orientation of the Cartesian system
of coordinates in such a way that the external field H points in
the z direction. Transforming the equation

dS
dt

= 1

h̄
[S × H − γ S × (S × H)] (9)

into spherical coordinates,11 we arrive at

dθ/dt = −HSγ sin θ/h̄, (10)

dφ/dt = −H/h̄, (11)

where S = (Sx,Sy,Sz) = S(sin θ cos φ, sin θ sin φ, cos θ ), S =
|S|, and H = |H|.

Equations (10) and (11) for the polar and azimuthal angles
are not coupled to each other, and their solutions have the form

tan(θ (τ )/2) = tan(θ (0)/2) exp(−HSγ τ/h̄), (12)

φ(τ ) = φ(0) − Hτ/h̄. (13)

Transforming these solutions back into the Cartesian repre-
sentation, and rotating the system of coordinates, we find
a covariant expression for the deterministic spin evolution
operator valid for an arbitrary orientation of the external
magnetic field H, namely

S(τ ) = exp(L̂dτ )S(0) = 2S(0)Heζ cos ξ + 2[S(0) × H]eζ sin ξ + HS[1 − e2ζ + χ (1 + e2ζ − 2eζ cos ξ )]

H [1 + e2ζ + χ (1 − e2ζ )]
, (14)

where ξ = Hτ/h̄, ζ = −HSγ τ/h̄, and χ = (S(0) · H)/SH .
We note that equation (9) conserves the magnitude of the spin
vector, and hence S = |S(t)| = |S(0)|.

For the stochastic part (8), provided that the magnitude of
h remains constant over an infinitesimal interval of time τ , we
use an analytical solution of equation

dS
dt

= 1

h̄
[S × h]. (15)

This solution has the form29–32

S(τ ) = exp(L̂sτ )S(0) = D(τ )S(0), (16)

where D(τ ) = I + � sin(ωτ ) + �2[1 − cos(ωτ )]. Here I is
the identity matrix, and � is an antisymmetric matrix
with components �xy = −ωz/ω, �zx = −ωy/ω, and �yz =
−ωx/ω, where ω = |ω| and ω = −h/h̄.
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In the practical implementation of the method, at each
integration step we evaluate the stochastic magnetic field using
the expression hα = η

√
μ/τ , where τ is the time step and

η is a random variable sampled from the standard normal
distribution.

We now have explicit analytical expressions for both the
deterministic and the stochastic evolution operators (7) and
(8), which we evaluate exactly using Eqs. (14) and (16).
Substituting these expressions into (5), we arrive at a formula
for the integration time step for our numerical Langevin spin
dynamics algorithm. The only source of error associated with
our formula is the error of the STD decomposition itself, which
is a quantity of the order of O(τ 3).

Comparing the above recipe with the available integration
algorithms11–14 we note the advantages offered by our method.
First, our formula does not require consideration of the effects
of multiplicative noise, which are automatically included
in the algorithm via the Suzuki-Trotter decomposition of
the evolution operators. The difficulty associated with the
existing treatments of multiplicative noise is associated with
the nonlinear nature of Eq. (2).10,11 In Ref. 11 the authors
adopted a fairly elaborate treatment of the multiplicative noise,
which involved the derivation of a Fokker-Planck equation.
Indeed, if one attempts to treat the evolution of a spin
vector using a single operation at each time step, then one
needs to include the noise-induced drift (the Stratonovich
calculus) as a correction. If such a correction is not intro-
duced, the spin trajectory converges to the Ito solution11

and becomes inconsistent with the FDR (see e.g., Refs. 13
and 14) derived within the framework of the Stratonovich
calculus.

Second, our algorithm guarantees the preservation of the
magnitude of the spin vector, since both the deterministic
[Eq. (14)] and stochastic [Eq. (16)] evolution operators
conserve the magnitude of the spin vector exactly. There
is no truncation error in Eqs. (14) and (16) associated
with the higher order terms ∼τ 2, τ 3, . . . , as opposed to
the often used linear addition11 or Runge-Kutta methods.12

Furthermore, our method imposes no constraint on the
magnitude of the fluctuation term, which appears difficult to
treat within the Runge-Kutta integration algorithm,12 where
numerical accuracy is guaranteed only in the weak noise
limit.

III. EQUATIONS FOR STATISTICAL MOMENTS

A question that one can pose in relation to Eq. (2) is whether
it is possible to evaluate the statistical ensemble average of the
spin vector 〈S〉 as a function of time. It is not immediately
obvious how to answer the question since the Langevin spin
dynamics equation, as opposed to the conventional Langevin
equation,3 is nonlinear. Earlier27 we noted that the nonlinear
nature of Eq. (2) allows the noise occurring at a preceding
moment of time to affect the solution at the current moment
of time through the nonlinear coupling involving all three
components of the spin vector.

Still, it appears possible to address the issue. To do this,
we first need to develop an auxiliary formalism. Our treatment
involves applying the Furutsu-Novikov theorem (FNT).33–36

The FNT states that the ensemble average of a product of a

functional f (t), which depends on Gaussian noise ε(t), and
the noise itself, equals

〈ε(t)f (t)〉 =
∫

dt ′〈ε(t)ε(t ′)〉
〈
δf (t)

δε(t ′)

〉
, (17)

where δf (t)/δε(t ′) denotes the functional derivative. In the
case of Langevin spin dynamics, the Furutsu-Novikov formula
has the form

〈hα(t)f (t)〉 = μ

〈
δf (t)

δhα(t)

〉
. (18)

This expression has a broad range of validity and is only subject
to the constraint that the random field h(t) is Gaussian and
delta-correlated.

Since the spin vector S at time t can be found by formally
integrating the Langevin spin equation, i.e.,

S(t) = S(0) + 1

h̄

∫ t

0
dτ [S × (H + h) − γ S × (S × H)], (19)

we can evaluate the functional derivative as

δSi(t)

δhj (t)
= 1

2h̄
εikjSk, (20)

where εikj is the Levi-Civita completely antisymmetric tensor.
Now, we generalize the treatment to the case of statistical

moments of the spin vector 〈(S · H)NS〉 treated as a function
of time, where N is a nonnegative integer. After some algebra,
we find that

d

dt
〈(S · H)NS〉

=
〈
(S · H)N

dS
dt

〉
+

〈
N (S · H)N−1

(
dS
dt

· H
)

S
〉

= 1

h̄
{〈(S · H)NS〉 × H + 〈(S · H)N (S × h)〉

− γ (N + 1)〈(S · H)N+1S〉 + γ S2〈(S · H)N 〉H
−N〈(S · H)N−1[(S × H) · h]S〉
+NγS2H 2〈(S · H)N−1S〉}. (21)

In Eq. (21), there are two terms that explicitly contain the
fluctuating field h. Using Eqs. (18) and (20), we find

〈(S · H)N (S × h)〉
= μ

h̄

[
N

2
S2〈(S · H)N−1〉H −

(
N

2
+ 1

)
〈(S · H)NS〉

]
,

(22)

〈(S · H)N [(S × H) · h]S〉
= μ

2h̄
[(N + 3)〈(S · H)N+1S〉

−NS2H 2〈(S · H)N−1S〉 − S2〈(S · H)N 〉H]. (23)

Substituting Eqs. (22) and (23) back into Eq. (21), we arrive at

d

dt
〈(S · H)NS〉

= 1

h̄

[
〈(S · H)NS〉×H + μ

2h̄
N (N − 1)S2H 2〈(S · H)N−2S〉

+NγS2H 2〈(S · H)N−1S〉 − μ

2h̄
(N + 2)(N + 1)
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×〈(S · H)NS〉 − γ (N + 1)〈(S · H)N+1S〉
+ μN

h̄
S2〈(S · H)N−1〉H + γ S2〈(S · H)N 〉H

]
. (24)

Note that this equation contains no stochastic terms. It
is also consistent with the treatment developed by Garcı́a-
Palacios and Lázaro,11 who investigated the case N = 0 using
the Fokker-Planck equation and derived an equation, similar
to (24), for the case corresponding to N = 0. One should note
that Eq. (24) is in fact an infinite set of differential equations.
The covariant vector form of this equation makes it possible
to project it onto an arbitrary constant vector. For example, we
can form a scalar product of (24) with the external field H, and
derive a somewhat more compact set of differential equations
for the moments 〈(S · H)N 〉, namely

d〈(S · H)N 〉
dt

= N

h̄

[
S2H 2

(
μ(N − 1)

2h̄
〈(S · H)N−2〉 + γ 〈(S · H)N−1〉

)

− μ(N + 1)

2h̄
〈(S · H)N 〉 − γ 〈(S · H)N+1〉

]
. (25)

This set of coupled equations makes it possible to follow the
evolution of the N th moment of (S · H), which is the negative
of the energy of interaction between the spin and the external
magnetic field.

Using Eq. (25) we find that the energy distribution for
an ensemble of spins evolving according to Langevin spin
dynamics converges to the equilibrium Gibbs distribution.
Indeed, if the energy distribution is given by the Gibbs formula,
the expectation value for the statistical moment 〈(S · H)N 〉eq at
equilibrium can be evaluated analytically as

〈(S · H)N 〉eq = (SH )N+1� − 〈(S · H)N+1〉eq

(N + 1)kBT
, (26)

where

� =
{

1 where N is odd,

coth(SH/kBT ) where N is even.
(27)

Substituting Eq. (26) into Eq. (25) and using the FDR μ =
2γh̄kBT we find that the right-hand side of Eq. (25) vanishes.
This applies to all the nonnegative integer values of N , proving
that the asymptotic equilibrium state of a spin ensemble that
evolves according to the Langevin spin dynamics equation is
described by the Gibbs distribution. This finding is consistent
with analysis based on the Fokker-Planck equation approach.27

Concluding this section, we note that the system of
equations (24) offers a straightforward and relatively simple
means of investigating the dynamics of spin relaxation, which
is alternative to the more elaborate approaches involving
either the integration of stochastic equations of Langevin spin
dynamics, or the derivation and analysis of the Fokker-Planck
equations.

IV. NUMERICAL EXAMPLES

In this section, we investigate two examples illustrating the
equivalence between the Langevin spin dynamics treatment

based on Eq. (2), and the set of coupled differential equations
for the statistical moments (24) and (25). For convenience, in
what follows we refer to the differential equations (24) and
(25) as the moments equations.

First, we investigate the dynamics of the thermalization
process for an ensemble of noninteracting spins. This requires
studying the variation of 〈S · H〉 treated as a function of time.
We also investigate the evolution of higher order moments
〈(S · H)N 〉. Second, we analyze the evolution of the spin-spin
self-correlation function 〈S(t) · S(0)〉, which is a quantity
related to the structure factor for neutron scattering.39,40

Using the integration algorithm developed in Sec. II
above, we have followed the evolution of a spin ensemble
containing 5000 spins. The ensemble average of any quantity
was estimated by averaging over all the 5000 spins during
the simulation. The spin evolution followed Eq. (2). The
fluctuating fields h for each spin were generated independently
using different random seeds. We use the following values of
parameters S = 2.2/g, H = 0.35 eV, and γ = 0.1, where g is
the electron g factor. These parameters approximately describe
bcc iron in the low temperature limit. The external field H is
assumed to be pointing in the z direction.

For the purpose of our analysis, the choice of parameters is
largely immaterial, although the fact that we can choose them
freely illustrates the robustness and numerical stability of the
Langevin spin dynamics integration algorithm. Similarly, the
values of temperature T and time t are significant only in
relation to the above choice of H and γ .

In a numerical simulation, we cannot integrate an infinite
number of equations, and hence the moments equations (24)
and (25) need to be terminated at a certain N . We note that if we
consider the equations up to the N th one, we lose information
about the (N + 1)th moment. On the other hand, we know
the asymptotic equilibrium values of all the moments derived
analytically from the Gibbs distribution. Using the equilibrium
limit values of moments for terminating the time-dependent
moments equations has the advantage of guaranteeing the cor-
rect asymptotic behavior of these quantities as t → ∞. To as-
sess the accuracy of this approximation we proceed as follows.

In the first case study, we initiate all the spin vectors
assuming that they point in the same direction as the external
field. Figure 1 shows the variation of the normalized first
moment 〈S · H〉 as a function of time, found by integrating
the Langevin equation (2) and the moments equations (25).
For T = 300 K, we find that about 30 moments equations
are required to arrive at a fully converged result, whereas
at T = 3000 K it is sufficient to retain just 5 equations
for the moments. The choice of the terminator does not
have any visible effect on the simulated dynamics of the
relaxation process if the number of equations is large enough.
Since the computational effort required for integrating fewer
than a hundred coupled differential equations is negligible,
this ensures the practical viability of the moments equations
approach. It is interesting that while evaluating the terminator
accurately is more difficult in the limit of high T , far fewer
equations need to be retained in (24) and (25) in this limit,
solving the problem of numerical stability of the method over
the entire temperature interval.

Figure 2 shows the variation of the normalized
1st, 2nd, 3rd, and 4th moments of (S · H) at various

134418-4



LANGEVIN SPIN DYNAMICS PHYSICAL REVIEW B 83, 134418 (2011)

FIG. 1. (Color online) The normalized first moment 〈S · H〉 evaluated as a function of time by integrating Eq. (2) and by using the moments
equations (25). At low temperature T = 300 K, as many as 30 equations are required for convergence, while at a higher temperature T = 3000 K
just 5 equations are sufficient. The solutions to the Langevin equation and the moments equations follow the same trend, confirming the
equivalence of the two methods in the treatment of spin relaxation.

temperatures, ranging from relatively low to extremely high.
Only the convergent curves evaluated using the moments
equations are shown for comparison. We see that not
only for the 1st moment, but also for the higher order

moments, the deterministic equations (24) and (25) are
fully consistent with the stochastic Langevin spin dynam-
ics simulations. All the relaxation modes characterizing a
spin ensemble evolving under the action of a stochastic

FIG. 2. (Color online) The normalized 1st, 2nd, 3rd, and 4th moments of (S · H) plotted as functions of time for T = 300 K, 3000 K,
10000 K, and 20000 K. The solutions of the moments equations are fully consistent with stochastic simulations based on the Langevin spin
dynamics equations.
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FIG. 3. (Color online) The normalized spin-spin self-correlation function plotted as a function of time for T = 300 K, 3000 K, 10000 K,
and 20000 K. All the spins were initiated assuming S = (Sx,0,Sz), where Sz = 〈S · H〉eq/H . The simulation data are in very good agreement
with the moments equations. The normalized moments 〈(S · H)N 〉 for N = 1, . . . ,5 at T = 3000 K are also shown for reference.

magnetic field can be reproduced by solving the moments
equations.

In the second case study illustrated in Fig. 3 we analyze the
variation of the normalized spin-spin self-correlation function
〈S(t) · S(0)〉 treated as a function of time t . At t = 0 all the
spins were assigned the same value S = (Sx,0,Sz), where
Sz = 〈S · H〉eq/H . Since the energy of a spin in an external
magnetic field is degenerate with respect to its rotation in
the plane normal to the field, the choice of Sx and Sy is
unimportant, although it needs to be consistent with the
principle of conservation of the magnitude of the spin vector.
As we noted before, Eq. (24) can be projected onto an arbitrary
vector. The spin-spin self-correlation function 〈S(t) · S(0)〉 is
in fact a projection of 〈S(t)〉 onto S(0). By examining Fig. 3 we
conclude that the moments equations reproduce almost exactly
the behavior found in the Langevin spin dynamics simulations.
The oscillations reflect the rotational nature of spin evolution.
Asymptotically, the spin-spin self-correlation function relaxes
to an equilibrium value. The variation of the normalized
moments 〈(S · H)N 〉 for N = 1, . . . , 5 at T = 3000 K is also
shown for reference.

V. ANALYTICAL ESTIMATES FOR THE RELAXATION
TIME SCALES

In order to investigate the dynamics of relaxation of a
spin ensemble evolving under the action of a stochastic field,
one can either directly integrate the Langevin spin dynamics
equation (2) or use the moments equations (24). In this section
we develop an approximate analytical treatment that makes it
possible to estimate the relaxation time scales.

If the spin ensemble is close to thermal equilibrium, we
may investigate the dynamics of thermalization by studying
the relaxation of a small perturbation of the spin configuration
from equilibrium. Since the reference equilibrium configura-
tion of the ensemble depends on temperature, we expect that
the relaxation time scales will also be temperature dependent.
Using Eq. (25) for N = 1, we find

d〈S · H〉
dt

= γ

h̄
[S2H 2 − 2kBT 〈S · H〉 + 〈(S · H)2〉]. (28)

A small perturbation δS introduced into Eq. (28) evolves
according to

d(δS · H)

dt
= −2γ

h̄
[kBT + 〈S · H〉](δS · H). (29)

The prefactor on the right-hand side of this equation equals
the inverse of the relaxation time scale,

τ−1
th = 2γ

h̄
[kBT + 〈S · H〉]. (30)

The equilibrium value of 〈S · H〉 is given by Eq. (26)
for N = 0,

〈S · H〉 = SH coth

(
SH

kBT

)
− kBT . (31)

Using this equation, we find that the inverse of the thermaliza-
tion time scale approximately equals

τ−1
th = 2γ

h̄
SH coth

(
SH

kBT

)
. (32)

At low temperatures (relative to the strength of H) we have
coth(SH/kBT ) ≈ 1, whereas in the high temperature limit
coth(SH/kBT ) ≈ kBT /SH . The interval of variation of the
inverse of the relaxation time scale is constrained by the two
limits

τ−1
th ≈ 2γ

h̄
×

{
SH, if kBT 
 SH .

kBT , if kBT � SH .
(33)

This equation shows that at low temperature the dominant
factor influencing the thermalization time scale is the strength
of external magnetic field H, whereas at high temperature
the main factor determining the relaxation time scale is
temperature.

In Fig. 4, we plot the normalized first moment 〈S · H〉 as
a function of time for the cases where the spin ensemble was
thermalized from 0 K to 300 K, and from 0 K to 20000 K.
The red curves in the same figure were calculated using the
equations

〈S(t)〉 = [〈S(0)〉 − 〈S〉eq]e−t/τth + 〈S〉eq, (34)
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FIG. 4. (Color online) The black curves show the normalized values of 〈S · H〉 plotted as functions of time for spin ensembles thermalized
by stochastic fields from 0 K to 300 K, and from 0 K to 20000 K. The red curves were calculated using the equations 〈S(t)〉 = [〈S(0)〉 −
〈S〉eq]e−t/τth + 〈S〉eq, where τth = 2γ SH/h̄ and τth = 2γ kBT /h̄ for 300 K and 20000 K, respectively.

where τ−1
th = 2γ SH/h̄ and τ−1

th = 2γ kBT /h̄ for 300 K and
20000 K, respectively.

It is surprising that the black and the red curves match
each other so well, given that the conditions of validity of the
perturbation treatment based on Eq. (29) are obviously not
satisfied. The origin of the unexpectedly high accuracy of the
perturbation treatment may be understood if we reexamine
Eq. (30).

Defining the reservoir temperature TR and the system
temperature TS , we rewrite Eq. (32) as follows:

τ−1
th = 2γ

h̄

[
kBTR + SH coth

(
SH

kBTS

)
− kBTS

]
. (35)

If the spin ensemble is thermalized starting from 0 K,
where both the reservoir and the system temperatures remain
low SH � kBTS , SH � kBTR , the relaxation of the system
follows the low temperature limit of Eq. (33). On the
other hand, if the reservoir is at very high temperature, the
term kBTR initially dominates the dynamics of relaxation.
During the thermalization process, TS increases, and the terms
SH coth(SH/kBTS) and kBTS cancel each other, with the
result that kBTR dominates the entire relaxation history. In this
case, relaxation follows the high temperature limit of Eq. (33).

In the case of relaxation of spin-spin self-correlations, the
situation is more complicated. First, we write Eq. (24) for
N = 0 as

d〈S〉
dt

= 1

h̄

[
〈S〉 × H − μ

h̄
〈S〉 − γ 〈(S · H)S〉 + γ S2H

]
. (36)

In cartesian component form this becomes

d〈Sx〉
dt

= 1

h̄

[
〈Sy〉H − μ

h̄
〈Sx〉 − γ 〈SzSx〉H

]
, (37)

d〈Sy〉
dt

= 1

h̄

[
− 〈Sx〉H − μ

h̄
〈Sy〉 − γ 〈SzSy〉H

]
, (38)

d〈Sz〉
dt

= 1

h̄

[
− μ

h̄
〈Sz〉 − γ 〈S2

z 〉H + γ S2H

]
. (39)

If a spin ensemble is in equilibrium, the probability of finding
a certain value of Sz is given by the Gibbs distribution.

We introduce the approximation Sz ≈ Sz, where Sz = 〈S ·
H〉eq/H . Using this approximation, we find 〈SzSx〉 ≈ Sz〈Sx〉
and 〈SzSy〉 ≈ Sz〈Sy〉. Applying the FDR, from Eqs. (37) and
(38) we find

d〈Sx〉
dt

= 1

h̄
[H 〈Sy〉 − γ (2kBT + SzH )〈Sx〉], (40)

d〈Sy〉
dt

= 1

h̄
[−H 〈Sx〉 − γ (2kBT + SzH )〈Sy〉]. (41)

Solutions of these coupled equations are

〈Sx〉 = Sxy cos

(
− H

h̄
t + φ

)
e−t/τss , (42)

〈Sy〉 = Sxy sin

(
− H

h̄
t + φ

)
e−t/τss , (43)

where φ is a phase defined by the initial conditions, and Sxy =√
S2 − S

2
z . The inverse of the relaxation time is now given by

τ−1
ss = γ

h̄
(2kBT + SzH )

= γ

h̄
(2kBT + 〈S · H〉eq)

= γ

h̄

[
kBT + SH coth

(
SH

kBT

)]
. (44)

Therefore, the spin-spin self-correlation function evolves
approximately according to

〈S(t) · S(0)〉 = (
S2 − S

2
z

)
cos

(
− H

h̄
t

)
e−t/τss + S

2
z. (45)

Proceeding similarly to the thermalization time (33), we write
the relaxation time for the spin-spin self-correlation function
in the low and high temperature limits as

τ−1
ss ≈ γ

h̄
×

{
kBT + SH if kBT 
 SH ,

2kBT if kBT � SH .
(46)
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FIG. 5. (Color online) The normalized spin-spin self-correlation
function plotted as a function of time. The simulation data points are
the same as in Fig. 3. The approximate treatment [Eqs. (44) and (45)]
agrees well with the simulation data.

In Fig. 5, we plot the relaxation curves calculated using
Eqs. (44) and (45) together with the data given in Fig. 3. We
see that the curves agree fairly well, although the agreement
is not as good as in the case shown in Fig. 3, where numerical
simulations are compared with the solutions of the moments
equations. From Eq. (45), we see that the oscillatory behavior
in Fig. 5 is associated with the cosine term, whereas the
exponential function describes the irreversible part of the
relaxation process.

In reality, the spin vectors do not initially point all in
the same direction. In thermal equilibrium, the directions
of the spin vectors are fairly random, subject to the Gibbs
distribution, meaning that S(0) does not have the same value
for all the spins. Figure 6 shows data for the spin-spin
self-correlation function evaluated starting from a thermalized

FIG. 6. (Color online) The normalized spin-spin self-correlation
function plotted as a function of time for the case where the simulation
starts from a thermalized spin ensemble. The approximate treatment
based on Eqs. (44) and (45) still matches the simulation well,
especially the relaxation behavior.

spin ensemble. We see that Eq. (45) still provides a fairly good
description of the relaxation process. Although the oscillatory
behavior predicted by Eq. (45) does not follow the simulation
exactly, the overall trend still matches the simulation quite
well.

VI. CONCLUSION

In this paper, we have derived a numerical algorithm
for integrating the Langevin spin dynamics equations. The
algorithm is based on the Suzuki-Trotter decomposition, and
guarantees the preservation of the magnitude of the spin vector.
Also the algorithm imposes no constraint on the magnitude
of the fluctuation term, and does not require correcting the
solution for a noise-induced drift term similar to that involved
in the derivation of the Fokker-Planck equation, or similar
methods.

We carried out the investigation starting from a set of
equations of motion (1) for a system of interacting spins,
and developed a rigorous integration algorithm considering,
as an example, the case of a single spin (2) interacting with an
external magnetic field. Of course, the algorithm applies fully
to the treatment of a system of interacting spins.18 The analysis
given above opens an avenue for further study associated
with the possibility of developing a self-consistent dynamic
mean field treatment of spin evolution for a fully interacting
system, where interaction with neighboring spins is treated
self-consistently as being equivalent to the effect of an external
time-dependent magnetic field.

To investigate spin relaxation, we derived a set of coupled
deterministic equations for the statistical moments of solutions
of the Langevin spin dynamics equations, and proved equiv-
alence between the moments method and direct integration
of the Langevin equation. Using the moments method, we
showed that a spin ensemble interacting with delta-correlated
stochastic noise evolves toward the equilibrium Gibbs dis-
tribution. By investigating two case studies we showed that
both the thermalization process and the relaxation of spin-spin
self-correlations are equally well described by the direct
stochastic simulations and by the moments equations, which
are in excellent agreement with each other.

Finally, we derived explicit analytical estimates for the
relaxation time scales and showed that these estimates make it
possible to identify the microscopic processes that dominate
the relaxation of spin ensembles in the low and high tempera-
ture limits.
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