
A User Guide

to the

PROCESS Fusion Reactor Systems Code

P. J. Knight

M. D. Kovari

Culham Centre for Fusion Energy

Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

12 January 2016 PROCESS version: r412

1

Contents

1 Introduction 9

1.1 Rationale . 9

1.2 History . 9

1.3 Sources of information . 10

2 Program Overview — The Fundamental Concepts 11

2.1 Equation Solvers . 11

2.1.1 Non-optimisation mode . 11

2.1.2 Optimisation mode . 11

2.1.3 Scans . 15

2.2 The Variable Descriptor File . 15

2.3 Input Parameters . 15

2.4 Iteration Variables . 15

2.5 Constraint Equations . 19

2.5.1 Consistency equations . 19

2.5.2 Limit equations . 19

2.6 Figures of Merit . 22

2.7 Scanning Variables . 22

3 Physics, Engineering and Other Models 25

3.1 Tokamak Power Plant . 25

3.1.1 Radial and vertical build . 25

3.1.2 Plasma physics models . 28

3.1.3 Armour, first wall and breeding blanket . 39

3.1.4 Shield . 42

3.1.5 Divertor . 42

3.1.6 Toroidal field coils . 42

3.1.7 Poloidal field coils . 45

2

3.1.8 Central solenoid . 47

3.1.9 Auxiliary power systems: heating and current drive 48

3.1.10 Structural components . 51

3.1.11 Cryostat and vacuum system . 51

3.1.12 Power conversion and heat dissipation systems 51

3.1.13 Buildings . 54

3.2 Spherical Tokamak Model . 54

3.2.1 Spherical tokamak switches . 55

3.3 Pulsed Plant Operation . 55

3.3.1 Thermal cycling package . 55

3.3.2 First wall coolant temperature rise limit . 56

3.3.3 First wall peak temperature limit . 56

3.3.4 Start-up power requirements . 56

3.3.5 Plasma current ramp-up time . 56

3.3.6 Burn time . 56

3.3.7 Thermal storage . 56

3.4 Hydrogen Production Facility . 57

3.5 Stellarator Model . 57

3.5.1 Stellarator physics . 58

3.5.2 Machine configuration . 61

3.6 Reversed Field Pinch Model . 62

3.6.1 RFP physics . 62

3.6.2 TF coils . 63

3.6.3 Ohmic heating coils . 64

3.6.4 EF coils . 64

3.6.5 Divertor . 64

3.6.6 Code modifications . 64

3.7 Inertial Fusion Energy Model . 64

3.8 Safety and Environment Models . 65

3.8.1 Neutronics . 65

3.8.2 Activation and inventory information . 66

3.9 Cost Models . 66

3.9.1 1990 cost model (cost model = 0) . 66

3.9.2 2015 Kovari model (cost model = 1) . 67

3.10 Plant availability . 67

3

4 Running PROCESS 69

4.1 Environment set-up . 69

4.2 User Interface . 69

4.3 Executing the Code . 71

4.4 The Input File . 71

4.5 The Output Files . 71

4.6 Optimisation mode . 71

4.7 Non-optimisation mode . 72

4.8 Troubleshooting . 72

4.8.1 Error handling . 73

4.8.2 General problems . 73

4.8.3 Optimisation problems . 73

4.8.4 Unfeasible results . 74

4.8.5 Hints . 75

5 Changing the Source Code: New Models, Variables and Constraints 76

5.1 Source Code Modification . 76

5.1.1 Changing the Fortran code . 76

5.1.2 Source code documentation . 77

5.2 Input Parameters . 78

5.3 Iteration Variables . 78

5.4 Other Global Variables . 79

5.5 Constraint Equations . 79

5.6 Figures of Merit . 80

5.7 Scanning Variables . 80

5.8 Submission of New Models . 81

5.9 Code Structure . 81

5.9.1 Numerics modules . 81

5.9.2 Physics modules . 81

5.9.3 Engineering modules . 82

5.9.4 Costing module . 82

5.9.5 Other modules . 82

6 Utility Programs 84

6.1 Executables . 84

6.1.1 Turn output into input (write new in dat.py) 84

4

6.1.2 Randomly vary the starting point (run process.py) 85

6.1.3 List PROCESS runs with comments (build index.py) 86

6.1.4 test process.py . 87

6.1.5 Output plotting: create data file (make plot dat.py) 88

6.1.6 Create a two-page summary (plot proc.py) . 89

6.1.7 output data.py . 89

6.1.8 plot sweep.py . 90

6.1.9 Plot scan results (plot mfile sweep.py) . 90

6.1.10 Plot iteration variables and constraint residuals (diagnose process.py) 90

6.1.11 fit profile.py . 91

6.1.12 Step from one model to another (a to b.py) . 91

6.1.13 N-Dimensional Scanner Utility . 93

6.1.14 Uncertainty Tools . 95

6.1.15 create dicts.py . 99

6.1.16 Batch Jobs . 99

6.1.17 mfile comparison.py . 100

6.1.18 test suite.py . 100

6.2 Python Libraries . 104

6.2.1 in dat.py . 104

6.2.2 mfile.py . 105

6.2.3 process funcs.py . 106

6.2.4 process config.py . 107

6.2.5 process dicts.py . 109

6.2.6 a to b config.py . 109

6.2.7 proc plot func.py . 110

6.2.8 diagnose funcs.py . 110

6.3 User Interface . 110

7 Code Management Tools 111

7.1 The Makefile . 111

7.1.1 Compilation . 111

7.1.2 Archiving utilities . 112

7.1.3 Code documentation . 112

7.2 Automatic Documentation . 112

7.3 Code Updates and Release Procedure . 113

7.3.1 Initial access to the source code . 113

5

7.3.2 Git workflow . 113

7.3.3 Full code rebuild . 117

8 Acknowledgements & Bibliography 118

A The Optimisation Solver Explained 124

A.1 The General Nonlinear Programming Problem . 124

A.2 The Lagrange Method . 126

A.3 Sequential Quadratic Programming (SQP) . 127

A.4 VMCON . 127

A.5 The Quadratic Subproblem (QSP) . 127

A.6 The Line Search . 130

A.7 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton update 131

A.8 Symbols . 132

B The Input File 133

B.0.1 Tokamak, stellarator, RFP or IFE? . 133

B.0.2 File format . 133

C Optimisation Input File 136

D Non-optimisation Input File 142

6

List of Figures

2.1 Flow diagram of PROCESS in non-optimisation mode 12

2.2 Flow diagram of PROCESS in optimisation mode . 14

3.1 Machine build for D-shaped major components . 26

3.2 Machine build for elliptical-shaped major components 27

3.3 Machine build for a single-null device . 29

3.4 Radiation power contributions . 34

3.5 Power balance within the core plasma . 37

3.6 Schematic diagram of the cross-section of a superconducting TF coil inner leg 43

3.7 Coil and plasma current waveforms . 46

3.8 Schematic diagram of the neutral beam access geometry 50

3.9 Power flow outside the fusion power plant core . 52

3.10 HELIAS 5-B Stellarator Power Plant Design . 58

3.11 Stellarator island divertor configuration . 61

6.1 PROCESS Test suite folder structure after a test run. The test area folder is where the output of the test

A.1 Illustration of Lagrange multiplier method . 125

A.2 Flowchart of the VMCON optimisation solver . 128

7

List of Tables

2.1 List of iteration variables 1 to 55 . 17

2.2 List of iteration variables 56 onwards . 18

2.3 List of constraint equations 1–50 . 21

2.4 List of constraint equations 51 onwards . 22

2.5 List of figures of merit . 23

2.6 List of scanning variables . 24

3.1 List of available energy confinement scaling laws . 36

3.2 List of available L-H power threshold scalings . 38

3.3 PROCESS switches for spherical tokamaks . 55

3.4 Variables used in the hydrogen plant model . 57

3.5 Parameters used in the Taylor-Ward availability model 67

5.1 Summary of numerics modules . 81

5.2 Summary of physics modules . 82

5.3 Summary of engineering modules . 82

5.4 Summary of other modules . 83

A.1 Summary of the description and meaning of the VMCON return parameters ifail. . . . 129

8

Chapter 1

Introduction

1.1 Rationale

During the course of studies into a proposed fusion power plant, there may be times when questions
of the following type arise:

Are the machine’s physics and engineering parameters consistent with one another?

Which machine of a given size and shape produces the cheapest electricity?

What is the effect of a more optimistic limit on the maximum plasma density on the
amount of auxiliary power required?

Questions such as these are extremely difficult to answer, since the large number of parameters involved
are highly dependent on one another. Fortunately, computer programs have been written to address
these issues, and PROCESS is one of them.

Suppose that an outline power plant design calls for a machine with a given size and shape, which will
produce a certain net electric power. There may be a vast number of different conceptual machines
that satisfy the problem as stated so far, and PROCESS can be used in “non-optimisation” mode to find
one of these whose physics and engineering parameters are self-consistent. However, the machine found
by PROCESS in this manner may not be possible to build in practice — the coils may be overstressed,
for instance, or the plasma pressure may exceed the maximum possible value. PROCESS contains a large
number of constraints to prevent the code from finding a machine with such problems, and running
the code in so-called “optimisation” mode forces these constraints to be met. The number of possible
conceptual machines is thus considerably reduced, and optimisation of the parameters with respect to
(say) the cost of electricity will reduce this number to a minimum (possibly one).

Formally then, PROCESS is a systems code that calculates in a self-consistent manner the parameters of
a fusion power plant with a specified performance, ensuring that its operating limits are not violated,
and with the option to optimise a given function of these parameters.

1.2 History

PROCESS is derived from several earlier systems codes, but is largely based on the TETRA (Tokamak
Engineering Test Reactor Analysis) code [1] and its descendant STORAC (Spherical TOrus Reactor
Analysis Code) [2], which includes routines relevant to the spherical tokamak class of machines. These
codes, and much of the original version of PROCESS itself, were written by personnel at Oak Ridge

9

Chapter 1 Introduction 10

National Laboratory in Tennessee, USA, with contributions from a number of other laboratories in
the USA. In addition, many of the mathematical routines have been taken from a number of different
well-established source libraries.

A great deal of effort was expended at Culham on the code’s arrival from ORNL in the early 1990s
to upgrade and extend the code, including the addition of machines based on the stellerator, reversed
field pinch and inertial confinement concepts.

PROCESS is being developed actively. This User Guide is updated in parallel with the code itself to
ensure that the documentation remains consistent with the latest version of the code. It is to be hoped
that it will be of assistance not only to users of PROCESS, but to anyone using PROCESS outputs or
models based on them.

1.3 Sources of information

The output file OUT.DAT contains details of all the constraints and iteration variables selected, the
input and output parameters, and which models have been chosen. It is essential to study the full
output before using the results in any way.

Details of the physics, engineering and cost models are being published:

[19]: M. Kovari et al., PROCESS: a systems code for fusion power plants - Part 1: Physics

[20]: M. Kovari et al., PROCESS: a systems code for fusion power plants - Part 2: Engineering, in
preparation

[21]: M. Kovari et al., The cost of a fusion power plant: extrapolation from ITER, in preparation

To view sample input and output files and a description of the variables, or to report bugs, request
improvements, propose new models, or contact the PROCESS developers, please visit

ccfe.ac.uk/powerplants.aspx.

http://www.ccfe.ac.uk/powerplants.aspx

Chapter 2

Program Overview — The
Fundamental Concepts

Fusion power plants are complex systems consisting of many non-linear interactions. One method
that can be used to model this kind of system is to iterate a number of free parameters (the so-called
iteration variables — see Section 2.4) in a controlled way so as to find a self-consistent set of device
parameters that satisfy all of the system’s constraint equations — see Section 2.5. PROCESS is organised
in a standard equation solver format to enable this task to be performed efficiently. The physics and
engineering routines together serve as a function evaluator, providing the information used in the
solution of the constraints. The numerical modules present in PROCESS perform the iteration required,
and also incorporate the option to maximise or minimise a given figure of merit – see Section 2.6.

2.1 Equation Solvers

PROCESS contains a constrained non-linear optimiser, and a constrained non-linear equation solver,
which reflect the two modes of operation available. Each of these has its own uses, as is now discussed.

2.1.1 Non-optimisation mode

The first of the two equation solvers present in PROCESS is the non-optimisation package HYBRD [3, 4].
Formally, HYBRD finds a zero of a system of N non-linear functions in N variables. This means simply
that N variables (power plant parameters) are iterated by PROCESS in such a way as to solve a set
of N equations (physics or engineering laws), i.e. a set of self-consistent power plant parameters is
found. This is useful for performing benchmark comparisons, when the device size is kept fixed, and
one only wishes to find calculated stresses, beta values, fusion powers, etc. A flow diagram of PROCESS
in non-optimisation mode is shown in Figure 2.1.

2.1.2 Optimisation mode

Sometimes one wants to find an optimal machine that is both consistent with the physics and
engineering constraints but also minimises or maximises a certain figure of merit. This requires
running PROCESS in optimisation mode. For these applications PROCESS uses the routine VMCON [5]
based on a variable metric method for constrained optimisation by Powell [6]. It finds a stationary
point of an objective function/figure of merit consistent with a set of equality and inequality constraints

11

Chapter 2 Program Overview — The Fundamental Concepts 12

initialise variables

input from file

define free parameters

define rules

to be obeyed

evaluate physics, engineering

and cost functions

apply consistency equations

write output

iterate

free parameters

self-consistent?

HHHHHHH©
©©©©©©HHHHHHH©©©©©©©

yes

no

?

?

?

?

?

?

?

-

6

6

¾

Figure 2.1: Flow diagram of PROCESS in non-optimisation mode.

Chapter 2 Program Overview — The Fundamental Concepts 13

(see Section A.1). It is designed to solve the necessary but not sufficient conditions of a constrained
optimum, hence, the solution does not have to be a global optimum (see Section A.2).

The detailed algorithm is explained in Appendix A and is based on the Lagrange method (see
Section A.2) that combines both the objective function and the constraints using Lagrange multipliers.
It applies a sequential quadratic programming approach (Section A.3) in which a series of subproblems
is solved that constitute a local quadratic expansion of the Lagrangian (Section A.5). The solution of
the quadratic subproblem is the direction of a line search along which a one dimensional optimisation
is performed (Section A.6). This line search was introduced by Powell to assure convergence from bad
starting parameters. Within PROCESS we have modified the line search of the original VMCON routine
to (try to) assure convergence, even for slightly inconsistent input functions.

The algorithm uses a quasi-Newtonian approach which only requires continuous first derivatives of
these functions. While the first derivatives are evaluated using a finite difference approximation, the
second derivatives are estimated using a variant of the Broyden-Fletcher-Goldfarb-Shanno update (see
Section A.7).

The convergence criterion of the solver as well as the detailed interpretation of the various error codes
are explained in Section A.4. A flow diagram of PROCESS in optimisation mode is shown in Figure 2.2.

Chapter 2 Program Overview — The Fundamental Concepts 14

initialise variables

input from file

define free parameters

(iteration variables)

and their bounds

define constraints

define figure-of-merit

evaluate physics, engineering

and cost functions

apply consistency equations

and limit equations

write output

iterate

free parameters

self-consistent?

HHHHHHH©
©©©©©©HHHHHHH©©©©©©©

yes

no

F-o-M minimised?

HHHHHHH©
©©©©©©HHHHHHH©©©©©©©

yes

no

?

?

?

?

?

?

?

?

?

-

-

6

6

6

¾

Figure 2.2: Conceptual flow diagram of PROCESS in optimisation mode. Please note that this is a
simplistic interpretation of the actual sequence of operations, to outline the difference between non-
optimisation and optimisation modes. For a more detailed (and correct!) VMCON flow diagram, please
see Figure A.2.

Chapter 2 Program Overview — The Fundamental Concepts 15

2.1.3 Scans

It is often useful to be able to scan through a range of values of a given parameter to see what effect
this has on the machine as a whole. Sensitivity studies of this kind can be achieved very easily using
PROCESS. Scans are carried out in optimisation mode, whereby the code initially performs a run using
the parameters specified in the input file, and then a series of runs using the parameters produced
at the end of the previous iteration. The value of the quantity being scanned is specified at every
stage — see Section 2.7. This method ensures that a smooth variation in the machine parameters is
achieved. A tool to carry out scans in any number of parameters is under development.

2.2 The Variable Descriptor File

The variable descriptor file vardes.html is an invaluable resource for the user of PROCESS. It acts as
a dictionary / reference manual for the code’s variables, and contains the following information about
each:

• name

• dimensions (of arrays)

• default value(s)

• description, including physical units if relevant

• for switches/flags, the meanings of all allowed values

• iteration variable number, if relevant

• corresponding constraint equation, if relevant

In addition, global code parameters are labelled FIX. These can only be changed by editing the relevant
source file, but this should not be carried out unless it is absolutely necessary.

All the variables that are shown with a default value are available to be changed by the user using
the input file (Section 4.4), except for those which are labelled FIX. Variables not shown with a
default value are calculated by the code from a combination of other parameters, and so it would be
meaningless to initialise them. Obviously, these variables cannot be changed using the input file.

2.3 Input Parameters

Input parameters make up a large proportion of the variables listed in the variable descriptor file.
They comprise all those variables that, once set in the input file (or set to a default value), do not
change throughout a PROCESS run. For example, the variable fdeut is input, and cannot change
during a run, appearing in vardes.html as follows: fdeut /0.5/ : deuterium fuel fraction.

2.4 Iteration Variables

Variables that are adjusted by PROCESS in order to satisfy the constraints and optimise the figure of
merit are referred to as iteration variables. Successive calls are made to the physics and engineering

Chapter 2 Program Overview — The Fundamental Concepts 16

routines, with slightly different values for the iteration variables on each call, and the equation solver
determines the effect on the output due to these small changes to the input (see Figures 2.1 and 2.2).
Tables 2.1 and 2.2 list the iteration variables available in PROCESS. Any one or more of these variables
may be selected.

Clearly, the equation solvers need at least as many variables to iterate as there are equations to solve,
i.e. nvar ≥ neqns. If the run is a non-optimising case, then neqns variables are iterated — the values
of the remaining (nvar-neqns) variables are left alone. If the run is an optimising case, then all the
active iteration variables are adjusted so as to find the minimum (or maximum) value of a parameter
(the figure of merit) in the nvar-dimensional space of the problem.

In optimisation mode, all the iteration variables are constrained to lie between lower and upper bounds.
For instance, the plasma electron density is, by default, confined to lie between the values 1019 m−3 and
1021 m−3. Of course, it can also be constrained to lie below the calculated density limit, if constraint
equation 5 is activated and the f-value fdene (iteration variable no. 9) is bounded by the values 0 and
1.

It is important to remember that iteration variables must never be initialised to zero. The code will
not be able to adjust the variable’s value if this is done, and it will stop with an error message.

For example, the major radius is available as an iteration variable, and appears in the variable
description file as rmajor /8.14/ : plasma major radius (m) (iteration variable 3). If it
is selected as an iteration variable, it will be adjusted by the code. The value input by the user (or
the default, if no value is specified), will be used as the starting value.

Chapter 2 Program Overview — The Fundamental Concepts 17

ixc icc lower upper
no. variable name description eqn bound bound

1 aspect plasma aspect ratio 1.100D0 10.00D0

2 bt toroidal field on axis 0.010D0 100.0D0

3 rmajor plasma major radius 0.100D0 10.00D0

4 te electron temperature 5.000D0 500.0D0

5 beta plasma beta 0.001D0 1.000D0

6 dene electron density 1.00D19 1.00D21

7 rnbeam hot beam density / electron density 1.00D-6 1.000D0

8 fbeta f-value for ǫ.βp limit equation 6 0.001D0 1.000D0

9 fdene f-value for density limit equation 5 0.001D0 1.000D0

10 hfact confinement time H-factor 0.100D0 3.000D0

11 pheat heating power not used for current drive 0.001D0 1.000D3

12 oacdcp overall current density in TF coil inboard leg 1.000D5 1.500D8

13 tfcth TF coil inboard leg thickness 1.000D0 5.000D0

14 fwalld f-value for wall load limit equation 8 0.001D0 1.000D0

15 fvs f-value for volt second limit equation 12 0.001D0 1.000D0

16 ohcth central solenoid thickness 0.001D0 1.000D2

17 tdwell dwell time 0.100D0 1.000D8

18 q edge safety factor 2.000D0 100.0D0

19 enbeam neutral beam energy 1.000D0 1.000D6

20 tcpav average (resistive) TF coil temperature 40.00D0 1.000D3

21 ftburn f-value for burn time limit equation 13 0.001D0 1.000D0

22 tbrnmn minimum burn time 0.001D0 1.000D6

23 fcoolcp coolant fraction of resistive TF coil 0.100D0 0.500D0

24 cdtfleg TF coil leg overall current density 1.000D4 1.000D8

25 fpnetel f-value for net electric power limit equation 16 0.001D0 1.000D0

26 ffuspow f-value for fusion power limit equation 9 0.001D0 1.000D0

27 fhldiv f-value for divertor heat load limit equation 18 0.001D0 1.000D0

28 fradpwr f-value for radiation power limit equation 17 0.001D0 0.990D0

29 bore machine bore 0.100D0 10.00D0

30 fmva f-value for MVA limit equation 19 0.010D0 1.000D0

31 gapomin minimum gap between outboard vacuum vessel and TF coil 0.001D0 10.00D0

32 frminor f-value for minor radius limit equation 21 0.001D0 1.000D0

33 fportsz f-value for beam tangency radius limit equation 20 0.001D0 1.000D0

34 fdivcol f-value for divertor collisionality limit equation 22 0.001D0 1.000D0

35 fpeakb f-value for peak toroidal field limit equation 25 0.001D0 1.000D0

36 fbetatry f-value for beta limit equation 24 0.001D0 1.000D0

37 coheof central solenoid current density at end of flat-top 1.000D5 1.000D8

38 fjohc f-value for central solenoid current at EOF limit equation 26 0.010D0 1.000D0

39 fjohc0 f-value for central solenoid current at BOP limit equation 27 0.001D0 1.000D0

40 fgamcd f-value for current drive gamma limit equation 37 0.001D0 1.000D0

41 fcohbop central solenoid current density ratio BOP/EOF 0.001D0 1.000D0

42 gapoh gap between central solenoid and TF coil 0.001D0 10.00D0

43 cfe0 seeded high-Z impurity fraction 1.00D-6 3.00D-3

44 fvsbrnni fraction of plasma current produced by non-inductive means 0.001D0 1.000D0

45 fqval f-value for fusion gain limit equation 28 0.001D0 1.000D0

46 fpinj f-value for injection power limit equation 30 0.001D0 1.000D0

47 feffcd current drive efficiency multiplier 0.001D0 1.000D0

48 fstrcase f-value for TF coil case stress limit equation 31 0.001D0 1.000D0

49 fstrcond f-value for TF coil conduit stress limit equation 32 0.001D0 1.000D0

50 fiooic f-value for TF coil operational current limit equation 33 0.001D0 1.000D0

51 fvdump f-value for TF coil dump voltage limit equation 34 0.001D0 1.000D0

52 vdalw allowable TF coil dump voltage 0.001D0 1.000D6

53 fjprot f-value for TF coil current protection limit equation 35 0.001D0 1.000D0

54 ftmargtf f-value for TF coil temperature margin limit equation 36 0.001D0 1.000D0

55 (OBSOLETE) - -

Table 2.1: Iteration variables 1 to 55 present in PROCESS. The f-values correspond to the given
constraint equations (see Table 2.3). The other iteration variables are shown in Table 2.2.

Chapter 2 Program Overview — The Fundamental Concepts 18

ixc icc lower upper
no. variable name description eqn bound bound

56 tdmptf dump time for TF coil 10.00D0 1.000D6

57 thkcas TF coil external case thickness 0.050D0 1.000D0

58 thwcndut TF coil conduit case thickness 0.001D0 1.000D0

59 fcutfsu copper fraction of cable conductor 0.001D0 1.000D0

60 cpttf current per turn in the TF coils 0.001D0 4.000D4

61 gapds gap between vacuum vessel and inboard TF coil 0.001D0 10.00D0

62 fdtmp f-value for 1st wall coolant temperature rise limit equation 38 0.001D0 1.000D0

63 ftpeak f-value for 1st wall peak temperature limit equation 39 0.001D0 1.000D0

64 fauxmn f-value for minimum auxiliary power limit equation 40 0.001D0 1.000D0

65 tohs central solenoid current ramp-up time 0.100D0 1.000D3

66 ftohs f-value for central solenoid current ramp-up time limit equation 41 0.001D0 1.000D0

67 ftcycl f-value for minimum cycle time limit equation 42 0.001D0 1.000D0

68 fptemp f-value for maximum centrepost temperature limit equation 44 0.001D0 1.000D0

69 rcool average radius of centrepost coolant channel 0.001D0 0.010D0

70 vcool maximum centrepost coolant flow speed at midplane 1.000D0 1.000D2

71 fq f-value for minimum edge safety factor limit equation 45 0.001D0 1.000D0

72 fipir f-value for maximum Ip/Irod limit equation 46 0.001D0 1.000D0

73 scrapli inboard gap between plasma and first wall 0.001D0 10.00D0

74 scraplo outboard gap between plasma and first wall 0.001D0 10.00D0

75 tfootfi ratio of TF coil outboard/inboard leg thickness 0.200D0 5.000D0

76 frfptf f-value for TF coil toroidal thickness limit equation 47 0.001D0 1.000D0

77 tftort TF coil toroidal thickness (use for RFPs only) 0.050D0 4.000D0

78 rfpth RFP pinch parameter, Θ 0.010D0 1.800D0

79 fbetap f-value for poloidal beta limit equation 48 0.001D0 1.000D0

80 frfpf f-value for RFP reversal parameter limit equation 49 0.001D0 1.000D0

81 edrive IFE driver energy 1.000D5 5.000D7

82 drveff IFE driver wall plug to target efficiency 0.010D0 1.000D0

83 tgain IFE target gain 1.000D0 500.0D0

84 chrad radius of IFE chamber 0.100D0 20.00D0

85 pdrive IFE driver power reaching target 1.000D6 2.000D8

86 frrmax f-value for maximum IFE repetition rate equation 50 0.001D0 1.000D0

87 helecmw electrical power required for hydrogen production 1.000D0 4.000D3

88 hthermmw thermal power required for hydrogen production 1.000D0 4.000D3

89 ftbr f-value for tritium breeding ratio limit equation 52 0.001D0 1.000D0

90 blbuith inboard blanket breeding unit thickness 0.001D0 2.000D0

91 blbuoth outboard blanket breeding unit thickness 0.001D0 2.000D0

92 fflutf f-value for fast neutron fluence on TF coil equation 53 0.001D0 1.000D0

93 shldith inboard shield thickness 0.001D0 10.00D0

94 shldoth outboard shield thickness 0.001D0 10.00D0

95 fptfnuc f-value for TF coil nuclear heating limit equation 54 0.001D0 1.000D0

96 fvvhe f-value for vessel He concentration limit equation 55 0.001D0 1.000D0

97 fpsepr f-value for Pseparatrix/Rmajor limit equation 56 0.001D0 1.000D0

98 li6enrich lithium-6 enrichment percentage (blktmodel=1) 7.400D0 100.0D0

99 (OBSOLETE) - -
100 (OBSOLETE) - -
101 prp ratio of TF coil radial plate area to winding pack area 1.00D-6 0.010D0

102 fimpvar impurity fraction of element impvar 1.00D-6 0.010D0

103 flhthresh f-value for L-H power threshold limit equation 15 1.000D0 1.000D6

104 fcwr f-value for conducting shell radius limit equation 23 0.001D0 1.000D0

105 fnbshinef f-value for NBI shine-through fraction limit equation 59 0.001D0 1.000D0

106 ftmargoh f-value for CS coil temperature margin limit equation 60 0.001D0 1.000D0

107 favail f-value for minimum availability limit equation 61 0.001D0 1.000D0

108 breeder f breeder volume ratio: Li4SiO4/(Be12Ti+Li4SiO4) 0.060D0 1.000D0

109 ralpne thermal alpha density / electron density 0.050D0 0.150D0

110 ftaulimit f-value for limit on ratio of alpha particle to energy confinement times 62 0.001D0 1.000D0

111 fniterpump f-value for constraint that number of pumps ¡ tfno 63 0.001D0 1.000D0

112 fzeffmax f-value for Zeff limit equation 64 0.001D0 1.000D0

113 ftaucq f-value for quench time limit equation 65 0.001D0 1.000D0

114 fw channel length Length of a single first wall channel 39 0.001D0 1.000D3

115 fpoloidalpower f-value for max rate of change of energy in poloidal field 66 0.001D0 1.000D0

Table 2.2: Iteration variables 56 onwards. The f-values correspond to the given constraint equations
(see Table 2.3). The other iteration variables are shown in Table 2.1.

Chapter 2 Program Overview — The Fundamental Concepts 19

2.5 Constraint Equations

Any computer program naturally contains myriads of equations. The built-in equation solvers within
PROCESS act on a special class, known as constraint equations, all of which are formulated in routine
constraint eqns in source file constraint equations.f90. Table 2.3 summarises the constraint
equations available in PROCESS. These can be split into two types — (1) consistency equations, that
enforce consistency between the physics and engineering parameters, and (2) limit equations, that
enforce various parameters to lie within their allowed limits. The neqns constraint equations that
the user chooses for a given run are activated by including the equation numbers in the first neqns

elements of array icc.

2.5.1 Consistency equations

Consistency equations are equalities that ensure that the machine produced by PROCESS is self-
consistent. This means, therefore, that many of these constraint equations should always be used,
namely equations 1, 2, 10 and 11 (see Table 2.3). Equation 7 should also be activated if neutral beam
injection is used. The other consistency equations can be activated if required.

A typical consistency equation ensures that two functions g and h are equal:

g(x, y, z, . . .) = h(x, y, z, . . .)

ci = 1 −
g

h

The equation solvers VMCON and HYBRD need the constraint equations ci to be given in the form
shown, since they adjust the iteration variables so as to obtain ci = 0, thereby ensuring that g = h.

2.5.2 Limit equations

The limit equations are inequalities that ensure that various physics or engineering limits are not
exceeded. Each of these equations has an associated f-value, which allow them to be coded as equalities.
The f-values are used as follows.

In general, limit equations have the form

calculated quantity = f × maximum allowable value

where f is the f-value. In optimisation mode, all iteration variables have prescribed lower and upper
bounds. If f is chosen to be an iteration variable and is given a lower bound of zero and an upper
bound of one, then the limit equation does indeed constrain the calculated quantity to lie between
zero and its maximum allowable value, as required.

As with the consistency equations, the general form of the limit equations is

ci = 1 − f.
hmax

h

where hmax is the maximum allowed value of the quantity h.

Sometimes, the limit equation and f-value are used to ensure that quantity h is larger than its minimum
value hmin. In this case, 0 ≤ f ≤ 1 (as before), but the equation takes the form

ci = 1 − f.
h

hmin

Chapter 2 Program Overview — The Fundamental Concepts 20

By fixing the f-value (i.e. not including it in the ixc array), the limit equations can be used as
equality constraints. For example, to set the net electric power to a certain value, the following should
be carried out:

1. Activate constraint 16 (net electric power lower limit) by including it in the first neqns elements
of array icc

2. Set the corresponding f-value fpnetel = 1.0D0

3. Ensure that fpnetel (iteration variable no. 25) IS NOT selected as an iteration variable.

4. Set pnetelin to the required net electric power.

Limit equations are not restricted to optimisation mode. In non-optimisation mode, the iteration
variables are not bounded, but the f-values can still be used to provide information about how
calculated values compare with limiting values, without having to change the characteristics of the
device being benchmarked to find a solution.

It is for this reason that all the constraint equations used in PROCESS are formulated as equalities,
despite the fact that equation solver VMCON can solve for inequalities as well. The use of f-values
precludes this need, and allows the non-optimising equation solver HYBRD to use the same constraint
equations.

Chapter 2 Program Overview — The Fundamental Concepts 21

icc corresponding
no. description type ixc variables

1 plasma beta consistency C 5

2 global power balance C 10,1,2,3,4,6,11
3 ion power balance (DEPRECATED - DO NOT USE) C 10,1,2,3,4,6,11
4 electron power balance (DEPRECATED - DO NOT USE) C 10,1,2,3,4,6,11
5 density upper limit L 9,1,2,3,4,5,6
6 epsilon-beta poloidal upper limit L 8,1,2,3,4,6
7 beam ion density (NBI) C 7

8 neutron wall load upper limit L 14,1,2,3,4,6
9 fusion power upper limit L 26,1,2,3,4,6
10 toroidal field 1/R consistency C 12,1,2,3,13
11 radial build consistency C 3,1,13,16,29,42,61
12 volt second capability lower limit L 15,1,2,3
13 burn time lower limit (PULSE) L 21,1,16,17,22,29,42,44,61
14 neutral beam decay lengths = tbeamin consistency (NBI) C 19,1,2,3,6
15 L-H power threshold limit L 103

16 net electric power lower limit L 25,1,2,3
17 radiation fraction upper limit L 28

18 divertor heat load upper limit L 27

19 MVA upper limit L 30

20 neutral beam tangency radius upper limit (NBI) L 33,31,3,13
21 minor radius lower limit L 32

22 divertor collisionality upper limit L 34,43
23 conducting shell to plasma minor radius ratio upper limit L 104,1,74
24 Beta upper limit (also beta limit in stellarators) L 36,1,2,3,4,6,18
25 peak toroidal field upper limit L 35,3,13,29
26 central solenoid current density at End of Flat-top upper limit L 38,37,41,12
27 central solenoid current density at Beginning of Pulse upper limit L 39,37,41,12
28 fusion gain Q lower limit L 45,47,40
29 inboard radial build = specified value C 3,1,13,16,29,42,61
30 injection power upper limit L 46,47,11
31 TF coil case stress upper limit (SCTF) L 48,56,57,58,59,60,24
32 TF coil conduit stress upper limit (SCTF) L 49,56,57,58,59,60,24
33 TF coil Ioperational/Icritical upper limit (SCTF) L 50,56,57,58,59,60,24

34 TF coil dump voltage upper limit (SCTF) L 51,52,56,57,58,59,60,24
35 TF coil Jwinding pack/Jprotection upper limit (SCTF) L 53,56,57,58,59,60,24

36 TF coil temperature margin lower limit (SCTF) L 54,55,56,57,58,59,60,24
37 current drive gamma upper limit L 40,47
38 first wall coolant temperature rise upper limit (PULSE) L 62

39 first wall peak temperature upper limit (PULSE) L 63

40 injection power lower limit (PULSE) L 64

41 central solenoid current ramp-up time lower limit (PULSE) L 66,65
42 cycle time lower limit (PULSE) L 67,65,17
43 average centrepost temperature (ST) C 69,70,13
44 peak centrepost temperature upper limit (ST) L 68,69,70
45 edge safety factor lower limit (ST) L 71,1,2,3
46 Ip/Irod upper limit (ST) L 72,2,60
47 TF coil toroidal thickness upper limit (RFP) L 76,77,13,3
48 poloidal beta upper limit L 79,2,3,18
49 reversal parameter < 0 (RFP) L 80,78,3,1
50 IFE repetition rate upper limit (IFE) L 86

Table 2.3: Summary of the first 50 constraint equations present in PROCESS. Consistency equations
are marked C, limit equations are marked L. Some (non-exhaustive) iteration variable numbers (see
Tables 2.1 and 2.2) that directly affect the associated constraint equations are given, the one listed first
being the most relevant.

Chapter 2 Program Overview — The Fundamental Concepts 22

icc corresponding
no. description type ixc variables

51 startup volt-seconds consistency (PULSE) C 16,29,3,1
52 tritium breeding ratio lower limit L 89,90,91
53 peak neutron fluence on TF coil upper limit L 92,93,94
54 peak TF coil nuclear heating upper limit L 95,93,94
55 final He concentration in vacuum vessel upper limit L 96,93,94
56 Pseparatrix/Rmajor upper limit L 97,1,3,102

57 (OBSOLETE) TF coil outer leg toroidal thickness lower limit (SCTF) L 99,29,13
58 (OBSOLETE) TF coil outer leg radial thickness lower limit (SCTF) L 100,13
59 Neutral beam shine-through fraction upper limit (NBI) L 105,6,19,4
60 Central solenoid temperature margin lower limit (SCTF) L 106

61 Minimum availability value limit L 107

62 Lower limit on the ratio of alpha particle to energy confinement times L 110

63 Number of vacuum pumps (vacuum model=simple) L 111

64 Limit on Zeff ≤ Zeffmax L 112

65 TF dump time greater than or equal to calculated quench time L 56, 113
66 Limit on rate of change of energy in poloidal field L 65, 115

Table 2.4: Summary of constraint equations 51 onwards. Consistency equations are marked C, limit
equations are marked L. Some (non-exhaustive) iteration variable numbers (see Tables 2.1 and 2.2)
that directly affect the associated constraint equations are given, the one listed first being the most
relevant.

2.6 Figures of Merit

In optimisation mode, PROCESS finds the self-consistent set of iteration variable values that maximises
or minimises a certain function of them, known as the figure of merit. Several possible figures of merit
are available, all of which are formulated in routine FUNFOM in source file evaluators.f90. Switch
minmax is used to control which figure of merit is to be used, as summarised in Table 2.5. If the figure
of merit is to be minimised, minmax should be positive, and if a maximised figure of merit is desired,
minmax should be negative.

2.7 Scanning Variables

One of a number of variables can be scanned during the course of a PROCESS run. This option provides
a method of determining the sensitivity of the results to different input assumptions. The user specifies
which variable is to be scanned (see Table 2.6) and its required value at each point in the scan. Set
input parameter isweep to the desired number of scan points. The scanned variable to use is defined
by the value of nsweep, and the chosen variable’s values during the scan are set in array sweep.

Runs involving scans of this kind can only be performed in optimisation mode. The results from the
previous scan point are used as the input to the next scan point. Routine SCAN in source file scan.f90
stores many of the output quantities in a separate output file called PLOT.DAT, which can be read by
the utility program plot sweep to produce graphical output (see Chapter 6).

It is also possible to scan a derived quantity that is not set directly by the user. For instance, one
can scan the net electric power by constraining it to a specified value using the technique described
in Section 2.5.2. The required net electric power, pnetelin, is then used as the scanning variable.

For obvious reasons, the active scanning variable must not also be an active iteration variable.

Chapter 2 Program Overview — The Fundamental Concepts 23

minmax description

±1 plasma major radius
±2 not used
±3 neutron wall load
±4 total TF coil + PF coil power
±5 ratio of fusion power to injection power
±6 cost of electricity

±7

{

direct cost if ireactor = 0

constructed cost otherwise
±8 aspect ratio
±9 divertor heat load
±10 toroidal field on axis
±11 injection power
±12 hydrogen plant capital cost
±13 hydrogen production rate
±14 pulse length
±15 plant availability factor (N.B. requires iavail>=1)
±16 minimise R0 and maximise burn time (linear combination)
±17 net electrical power

Table 2.5: Summary of the available figures of merit in PROCESS. If the figure of merit is to be
minimised, minmax should be positive, and if a maximised figure of merit is desired, minmax should be
negative.

Chapter 2 Program Overview — The Fundamental Concepts 24

nsweep scan variable description

1 aspect plasma aspect ratio
2 hldivlim maximum divertor heat load
3 pnetelin required net electric power
4 hfact confinement time H-factor
5 oacdcp overall current density in TF coil inboard leg
6 walalw allowable wall load
7 beamfus0 beam-background fusion multiplier
8 fqval f-value for fusion gain limit eqn
9 te electron temperature
10 boundu(15) upper bound on f-value fvs

11 dnbeta beta g coefficient
12 bscfmax bootstrap current fraction (use negative values)
13 boundu(10) upper bound on confinement time H-factor hfact
14 fiooic f-value for TF coil operational current limit eqn
15 fjprot f-value for TF coil current protection limit eqn
16 rmajor plasma major radius
17 bmxlim maximum toroidal field
18 gammax maximum current drive gamma
19 boundl(16) lower bound on central solenoid thickness ohcth
20 tbrnmn minimum burn time (pulsed operation machine)
21 sigpfalw allowable stress in the PF coils
22 cfactr plant availability factor (N.B. requires iavail=0)
23 boundu(72) upper bound on f-value fipir

24 powfmax maximum fusion power
25 kappa plasma elongation
26 triang plasma triangularity
27 tbrmin minimum tritium breeding ratio (blktmodel=1)
28 bt toroidal field on axis
29 coreradius normalised radius defining the core region
30 fimpvar impurity fraction of element impvar
31 taulimit Taup/taueff lower limit

Table 2.6: Summary of the scanning variables available in PROCESS.

Chapter 3

Physics, Engineering and Other Models

There are a great number of individual models within PROCESS, characterising many different aspects
of a fusion power plant. Several of these will always be used by the code and so require no input by
the user to activate them. However, in many cases there is a choice of model available, and each of
these has its own user-controlled switches or flags. This chapter summarises some of these models,
and indicates their location and interaction within the code, together with the relevant switch settings
and required parameter values. The concepts used (iteration variables, constraint equations, etc.),
and instructions on how to set switches, etc., are explained fully in Chapter 2.

It is essential for the user to refer to the variable descriptor file, vardes.html, this contains details of
all the parameters within the code that can be changed by the user, in order to customise the machine
modelled by PROCESS.

Disclaimer: Users are discouraged from using non-default or older models, as they are
likely to be less well tested than the default models and should therefore be treated with
caution.

3.1 Tokamak Power Plant

The default (and most detailed) power plant model in PROCESS is based on the tokamak magnetic-
confinement fusion concept. This section describes the models relevant to such a plant in some detail,
starting with the plasma at the centre of the fusion power core, and moving outwards to the external
components, power subsystems and buildings. However, many of these models are also partly or
wholly relevant for the other available machine types, especially outside the fusion power core. The
specific details for these alternative models are introduced later in the Chapter.

3.1.1 Radial and vertical build

Figure 3.1 shows schematically the layout of a typical tokamak as modelled by PROCESS. This is the
so-called ‘build’ of the machine — the relative locations of the major components. Their positions are
referenced to the (R, Z) coordinate system, where R is the radial distance from the vertical centreline
(axis) of the torus, and Z is the vertical distance from the equatorial midplane, about which the
machine is assumed to be up-down symmetrical (by default; the vertical build is slightly different for
single null plasma devices — see Figure 3.3). Components are often referred to as being ‘inboard’ or
‘outboard’, which simply means that they lie at a radius R less than or greater than R0, respectively,
where R0 is the plasma major radius (rmajor). For the sake of clarity the thicknesses are not drawn

25

Chapter 3 Physics, Engineering and Other Models 26

to scale, and the space labelled as the divertor does not indicate in any way the actual shape of that
component.

The first wall, blanket, shield and vacuum vessel may be either D-shaped in cross-section, or each may
be defined by two half-ellipses; compare their shapes in Figures 3.1 and 3.2. The choice between these
two possibilities is set using input parameter fwbsshape [8], which should be 1 for D-shaped, or 2 for
ellipses.

PF coil (ipfloc=2)

plasma

dd
w

ex

tft
hk

o

sh
ld

ot
h

bl
nk

ot
h

fw
ot

h
sc

ra
pl

o

rm
in

or

rm
in

or

sc
ra

pl
i

fw
ith

bl
nk

ith
sh

ld
ith

tfc
th

oh
ct

h

bo
re

rbmax rsldi rmajor rsldo rtot

R

Z

divfix

shldtth

tfcth

hmax

(hmax x
ohhghf)

(rminor x triang)

(rminor x kappa)

vgap

shield
blanket
first wall

TF coil

ddwex

vacuum vessel
clh1

ro
ut

r

rp
f2

de
w

ar

rdewex

external cryostat

ga
pd

s
dd

w
i

dd
w

i
ga

ps
to

ddwi

vgap2

PF coils
(ipfloc=3)

ga
po

h

(ipfloc=1)
PF coil

0.1m

0.2m

0.86m

C
en

tr
al

 s
ol

en
oi

d

divertor

Figure 3.1: Schematic diagram of the fusion power core of a typical tokamak power plant modelled by
PROCESS, showing the relative positions of the components. A double null plasma is assumed (snull=0)
— compare Figure 3.3, and the first wall, blanket, shield and vacuum vessel are D-shaped in cross-
section (chosen by setting switch fwbsshape=1) — compare Figure 3.2. Also shown are the code
variables used to define the thicknesses of the components. The arrowed labels adjacent to the axes are
the total ‘builds’ to that point. The precise locations and sizes of the PF coils are calculated within the
code (see Section 3.1.7).

Most of the thicknesses shown in Figures 3.1 and 3.2 are input parameters, so are not changed during
the course of the simulation. The rest are calculated by the code during execution. In addition, some
of the component sizes can be used as iteration variables (see Section 2.4) to help in the optimisation

Chapter 3 Physics, Engineering and Other Models 27

PF coil (ipfloc=2)

plasma

dd
w

ex

tft
hk

o

sh
ld

ot
h

bl
nk

ot
h

fw
ot

h
sc

ra
pl

o

rm
in

or

rm
in

or

sc
ra

pl
i

fw
ith

bl
nk

ith
sh

ld
ith

tfc
th

oh
ct

h

bo
re

rbmax rsldi rmajor rsldo rtot

R

Z

divfix

shldtth

tfcth

hmax

(hmax x
ohhghf)

(rminor x triang)

(rminor x kappa)

vgap

shield
blanket
first wall

TF coil

ddwex

vacuum vessel
clh1

ro
ut

r

rp
f2

de
w

ar

rdewex

external cryostat

divertor

ddwi

vgap2

ga
ps

to
dd

w
i

ga
pd

s
dd

w
i

PF coils
(ipfloc=3)

ga
po

h

0.2m

0.1m

(ipfloc=1)
PF coil

0.86m

C
en

tr
al

 s
ol

en
oi

d

Figure 3.2: Schematic diagram of the fusion power core of a typical tokamak power plant modelled by
PROCESS. The first wall, blanket, shield and vacuum vessel cross-sectional shapes are each assumed to
be defined by two ellipses (chosen by setting switch fwbsshape=2) — compare Figure 3.1.

Chapter 3 Physics, Engineering and Other Models 28

process.

3.1.2 Plasma physics models

By default, the plasma is assumed to have an up-down asymmetric, single null configuration (although
this can be changed if desired — see Section 3.1.5). A great number of physics models are coded within
PROCESS to describe the behaviour of the plasma parameters such as its current, temperature, density,
pressure, confinement etc., and also the various limits that define the stable operating domain.

3.1.2.1 Plasma geometry

The plasma (geometric) major radius R0 (rmajor) and aspect ratio A (aspect) define the size of
the plasma torus. The plasma minor radius a (rminor) is calculated from these values. The shape
of the plasma cross-section is given by its last closed flux surface (LCFS) elongation κ (kappa) and
triangularity δ (triang), which can be scaled automatically with the aspect ratio if required using
switch ishape:

• If ishape = 0, the input values for kappa and triang are used directly.

• If ishape = 1, the following scaling is used, which is suitable for low aspect ratio machines
(ǫ = 1/A) [2]:

κ = 2.05 (1 + 0.44 ǫ2.1) (3.1)

δ = 0.53 (1 + 0.77 ǫ3) (3.2)

• If ishape = 2, the Zohm ITER scaling [9] is used to calculate the elongation:

κ = Fkz × minimum

(

2.0, 1.5 +
0.5

A − 1

)

(3.3)

where input variable fkzohm = Fkz may be used to adjust the scaling, while the input value of
the triangularity is used unchanged.

If ishape = 0, 1 or 2, the values for the plasma shaping parameters at the 95% flux surface are
calculated as follows [10]:

κ95 = κ/1.12 (3.4)

δ95 = δ/1.5 (3.5)

• If ishape = 3, the Zohm ITER scaling [9] is used to calculate the elongation (as for ishape =

2 above), but the triangularity at the 95% flux surface is input via variable triang95, and the
LCFS triangularity triang is calculated from it, rather than the other way round.

• Finally, if ishape = 4, the 95% flux surface values kappa95 and triang95 are both used as
inputs, and the LCFS values are calculated from them by inverting Equations 3.4 and 3.5.

A constraint relating to the plasma’s vertical stability may be turned on if required. In principle,
the inner surface of the outboard shield could be used as the location of a conducting shell which
should mitigate the vertical displacement growth rate of plasmas with significant elongation [11].
The maximum distance rshell, max of this shell from the centre of the plasma may be set using input

Chapter 3 Physics, Engineering and Other Models 29

Z

(rminor x kappa)

PF coil (ipfloc=2)

divfix

shldtth

tfcth

(rminor x triang)

TF coil

ddwex

clh1

PF coil (ipfloc=2)

plasma

R

shield
blanket
first wall

ddwex

vacuum vessel
clh1

external cryostat

shldtth

(scrapli+scraplo)/2
(fwith+fwoth)/2

(hmax x
ohhghf)

tfcth

(rminor x kappa)

divertor

vgap2
ddwi

blnktth

vgap2

vgap

ddwi

hpfu

hmax

PF coils
(ipfloc=3)

PF coils
(ipfloc=3)

(ipfloc=1)
PF coil

0.2m

0.1m

PF coil
(ipfloc=1)

0.86m

C
en

tr
al

 s
ol

en
oi

d

0.86m

TF coil

Figure 3.3: Schematic diagram of the fusion power core of a typical tokamak power plant modelled by
PROCESS, showing the relative positions of the components. A single null plasma is assumed (snull=1)
— compare Figure 3.2. The radial build is the same as for a double null configuration; shown along
the vertical axis are the code variables used to define the vertical thicknesses of the components. The
arrowed labels adjacent to the axis are the total ‘builds’ (distance from the midplane, Z=0) to that
point. The precise locations and sizes of the PF coils are calculated within the code (see Section 3.1.7).

Chapter 3 Physics, Engineering and Other Models 30

parameter cwrmax, such that rshell, max = cwrmax*rminor. Constraint equation no. 23 should be
turned on with iteration variable no. 104 (fcwr) to enforce this. (A scaling of cwrmax with elongation
should be available shortly.)

The plasma surface area, cross-sectional area and volume are calculated using formulations that
approximate the LCFS as a revolution of two arcs which intersect the plasma X-points and the plasma
midplane outer and inner radii. (This is a reasonable assumption for double-null diverted plasmas,
but will be inaccurate for single-null plasmas, snull = 1.) Switch igeom determines whether an old
method is used (igeom = 0) or calculations based on a more recent derivation (igeom = 1) [12].

3.1.2.2 Fusion reactions

The most likely fusion reaction to be utilised in a power plant is the deuterium-tritium reaction:

D + T =⇒ 4He + n + 17.6 MeV (3.6)

20% of the energy produced is given to the alpha particles (4He), a fraction of which remain (c.f.
falpha, Section sec:corepower) within the plasma and thermalise (slow down) due to collisions, thus
heating the plasma. The remaining 80% is carried away by the neutrons, which deposit their energy
within the blanket and shield.

PROCESS can also model D-3He power plants, which utilise the following primary fusion reaction:

D + 3He =⇒ 4He + p + 18.3 MeV (3.7)

The fusion reaction rate is significantly different to that for D-T fusion, and the power flow from the
plasma is modified since charged particles are produced rather than neutrons. Because only charged
particles (which remain in the plasma) are produced by this reaction, the whole of the fusion power
is used to heat the plasma. Useful energy is extracted from the plasma since the radiation power
produced is very high, and this can be converted to electricity in a number of ways.

Since the temperature required to ignite the D-3He reaction is considerably higher than that for D-T,
it is necessary to take into account the following D-D reactions, which have significant reaction rates
at such temperatures:

D + D =⇒ 3He + n + 3.27 MeV (3.8)

D + D =⇒ T + p + 4.03 MeV (3.9)

Also, as tritium is produced by the latter reaction, D-T fusion is also possible. As a result, there is
still a small amount of neutron power extracted from the plasma.

Pure D-3He tokamak power plants do not include blankets, because of the near absence of neutrons
leaving the plasma, and the fact that no tritium needs to be produced for fuel.

The contributions from all four of the above fusion reactions are included in the total fusion power
production calculation. The fusion reaction rates are calculated using the parametrizations in [13],
integrated over the plasma profiles (correctly, with or without pedestals).

The fractional composition of the “fuel” ions (D, T and 3He) is controlled using the three variables
fdeut, ftrit and fhe3, respectively:

nfuel = nD + nT + n3He particles/m3

nD = fdeutnfuel

nT = ftritnfuel

n3He = fhe3nfuel

PROCESS checks that fdeut + ftrit + fhe3 = 1.0, and stops with an error message otherwise.

Chapter 3 Physics, Engineering and Other Models 31

3.1.2.3 Plasma profiles

If switch ipedestal = 0, the plasma profiles are assumed to be parabolic, i.e. they are of the form

Density : n(ρ) = n0

(

1 − ρ2
)αn

(3.10)

Temperature : T (ρ) = T0

(

1 − ρ2
)αT (3.11)

Current : J(r) = J0

(

1 − ρ2
)αJ (3.12)

where ρ = r/a, and a is the plasma minor radius. This gives volume-averaged values 〈n〉 = n0/(1+αn),
and line-averaged values n̄ ∼ n0/

√

(1 + αn), etc. These volume- and line-averages are used throughout
the code along with the profile indices α, in the various physics models, many of which are fits to
theory-based or empirical scalings. Thus, the plasma model in PROCESS may be described as “1

2
-D”.

The relevant profile index variables are alphan, alphat and alphaj, respectively (see Section 3.1.2.9).

However, by default, ipedestal = 1 which allows the density and temperature profiles to include a
pedestal, using the forms specified in [14]:

density: n(ρ) =

nped + (n0 − nped)

(

1 −
ρ2

ρ2
ped,n

)αn

0 ≤ ρ ≤ ρped,n

nsep + (nped − nsep)

(

1 − ρ

1 − ρped,n

)

ρped,n < ρ ≤ 1

(3.13)

temperature: T (ρ) =

Tped + (T0 − Tped)

(

1 −
ρβT

ρβT

ped,T

)αT

0 ≤ ρ ≤ ρped,T

Tsep + (Tped − Tsep)

(

1 − ρ

1 − ρped,T

)

ρped,T < ρ ≤ 1

(3.14)

Subscripts 0, ped and sep, denote values at the centre (ρ = 0), the pedestal (ρ = ρped) and the
separatrix (ρ = 1), respectively. The density and temperature peaking parameters αn and a αT as
well as the second exponent βT (input parameter tbeta, not to be confused with the plasma beta) in
the temperature profile can be chosen by the user, as can the pedestal heights and the values at the
separatrix (neped, nesep for the electron density, and teped, tesep for the electron temperature;
the ion equivalents are scaled from the electron values by the ratio of the volume-averaged values).
The density at the centre is given by

n0 =
1

3ρ2
ped,n

[

3〈n〉(1 + αn) + nsep(1 + αn)(−2 + ρped,n + ρ2
ped,n)

−nped

(

(1 + αn)(1 + ρped,n) + (αn − 2)ρ2
ped,n

)]

(3.15)

where 〈n〉 is the volume-averaged density. The temperature at the centre is given by

T0 = Tped + γ

[

Tped ρ2
ped,T − 〈T 〉 +

1

3
(1 − ρped,T) [(1 + 2ρped,T)Tped + (2 + ρped,T)Tsep]

]

(3.16)

with

γ =

−Γ(1 + αT + 2/βT)

ρ2
ped,T Γ(1 + αT) Γ((2 + βT)/βT)

for integer αT

Γ(−αT) sin(πα) Γ(1 + αT + 2/βT)

πρ2
ped,T Γ((2 + βT)/βT)

for non-integer αT

(3.17)

where Γ is the gamma function.

Chapter 3 Physics, Engineering and Other Models 32

Note that density and temperature can have different pedestal positions ρped,n (rhopedn) and ρped,T

(rhopedt) in agreement with simulations.

The pedestal density can be set directly (if iscdens=1), or as a fraction of the Greenwald density (if
iscdens=1). The default fraction is 0.8 [15].

3.1.2.4 Beta limits

The plasma beta limit [16, 17] is given by

〈β〉 < g
I(MA)

a(m)B0(T)
(3.18)

where B0 is the axial vacuum toroidal field, and β is defined with respect to the total equilibrium
B-field [17]. The beta coefficient g is set using input parameter dnbeta (but see Section 3.1.2.9). To
apply the beta limit, constraint equation no. 24 should be turned on with iteration variable no. 36
(fbetatry). The limit can be applied to either the total plasma beta, in which case switch iculbl

should be set to 0, to only the thermal component of the plasma beta, in which case iculbl should
be set to 1, or to the thermal plus neutral beam components, in which case iculbl should be set to 2.

Aspect ratio scaling of beta g coefficient

Switch gtscale determines whether the beta g coefficient dnbeta should scale with aspect ratio
(gtscale 6= 0), or be fixed at the input value (gtscale = 0). Note that gtscale is over-ridden if
iprofile = 1 (see Section 3.1.2.9).

Limiting ǫ.βp

To apply a limit to the value of ǫ.βp, where ǫ = a/R is the inverse aspect ratio, constraint equation
no. 6 should be turned on with iteration variable no. 8 (fbeta). The limiting value of ǫ.βp should be
set using input parameter epbetmax.

3.1.2.5 Fast alpha pressure contribution

Switch ifalphap may be used to select the model used to calculate the pressure contribution from
the fast alpha particles:

βα

βth

= 0.29 (〈T10〉 − 0.37)

(

nDT

ne

)2

ifalphap = 0 [16] (3.19)

βα

βth

= 0.26 (〈T10〉 − 0.65)0.5

(

nDT

ne

)2

ifalphap = 1 (default) [18] (3.20)

The latter model is a better estimate at higher temperatures.

3.1.2.6 Density limits

Several density limit models [17] are available in PROCESS. These are calculated in routine CULDLM,
which is called by PHYSICS. To enforce any of these limits, turn on constraint equation no. 5 with
iteration variable no. 9 (fdene). In addition, switch idensl must be set to the relevant value, as
follows:-

Chapter 3 Physics, Engineering and Other Models 33

idensl = 1 : ASDEX model

idensl = 2 : Borrass model for ITER, I

idensl = 3 : Borrass model for ITER, II

idensl = 4 : JET edge radiation model

idensl = 5 : JET simplified model

idensl = 6 : Hugill-Murakami M.q model

idensl = 7 : Greenwald model

3.1.2.7 Impurities and radiation

The impurity radiation model in PROCESS can be chosen using the switch imprad model, where
imprad model = 0 gives the original ITER 1989 model [19], and imprad model = 1 uses a multi-
impurity model which integrates the radiation contributions over an arbitrary choice of density and
temperature profiles [22].

If imprad model = 0, the impurity species and fractions are chosen using input parameters impc,
impo, fbfe, cfe0 and zfear; see the variable descriptor file for more details.

If imprad model = 1, the impurity number density fractions relative to the electron density are
set using input array fimp(1 to nimp), where nimp = 14 is the number of impurity species in the
radiation model. The available impurities are as follows:

1. Hydrogen (fraction calculated by code)

2. Helium (fraction calculated by code)

3. Beryllium

4. Carbon

5. Nitrogen

6. Oxygen

7. Neon

8. Silicon

9. Argon

10. Iron

11. Nickel

12. Krypton

13. Xenon

14. Tungsten

Chapter 3 Physics, Engineering and Other Models 34

As stated above, the number density fractions for hydrogen (all isotopes) and helium need not be set,
as they are calculated by the code to ensure that plasma quasi-neutrality is maintained, and taking
into account the fuel ratios fdeut, ftrit and fhe3 (see Section 3.1.2.2), and the alpha particle fraction
ralpne which may be input by the user.

The impurity fraction of one of the elements listed in array fimp may be used as an iteration variable
(although it will only have any effect if imprad model = 1). The element to use is specified using
input parameter impvar, which may be set to a value between 3 and nimp, and the initial estimate to
use for the element’s impurity fraction must be set using iteration variable no. 102 (fimpvar).

The synchrotron radiation power [23, 24] is assumed to originate from the plasma core. The wall
reflection factor ssync may be set by the user.

By changing the input parameter coreradius, the user may set the normalised radius defining the core
region (imprad model = 1 only). Only the impurity and synchrotron radiation from the core region
affects the confinement scaling (but see the iradloss description in Section 3.1.2.10). Figure 3.4
elucidates the radiation power contributions, while Figures 3.5 and ?? show how the radiation power
propagates through the fusion power core.

Bremsstrahlung
power

[pbrempv]

Line radiation
power

[plinepv]

Total impurity
radiation power

[pimptot]

Core radiation
power

[pcoreradpv]

Edge radiation
power

[pedgeradpv]

Total radiation power
[pradpv]

Synchrotron
power

[psyncpv]

Core impurity
power

[pimpcore]

Figure 3.4: Schematic diagram of the radiation power contributions and how they are split between
core and edge radiation, for imprad model = 1.

Constraint equation no. 17 with iteration variable no. 28 (fradpwr) ensures that the calculated total
radiation power does not exceed the total power available that can be converted to radiation (i.e. the
sum of the fusion alpha power, other charged particle fusion power, auxiliary injected power and the
ohmic power). This constraint should always be turned on.

3.1.2.8 Plasma current scaling laws

A number of plasma current scaling laws exploiting the inverse relationship between plasma current
and edge safety factor qψ [17] are available in PROCESS. These are calculated in routine CULCUR, which
is called by PHYSICS. Flag icurr must be set to the relevant value, as follows:-

icurr = 1 : Peng analytic fit

icurr = 2 : Peng double null divertor scaling (ST) [2]

icurr = 3 : Simple ITER scaling

icurr = 4 : Revised ITER scaling [25]

icurr = 5 : Todd empirical scaling, I

icurr = 6 : Todd empirical scaling, II

Chapter 3 Physics, Engineering and Other Models 35

icurr = 7 : Connor-Hastie model

3.1.2.9 Plasma current profile consistency

Self-consistency between the plasma current profile parameters [10] can be enforced by setting switch
iprofile to 1. This ensures that the current profile peaking factor alphaj is consistent with the
input values for the safety factor on axis and at the plasma edge (q0 and q, respectively), the plasma
internal inductance li is consistent with this alphaj, and the beta g coefficient dnbeta scales with li.

It is recommended that current scaling law icurr = 4 is used if iprofile = 1. Switch gtscale is
over-ridden if iprofile = 1.

3.1.2.10 Confinement time scaling laws

The particle transport loss power in Watts/m3 from the plasma is defined as

Ploss =
W

τE

(3.21)

where the plasma stored energy per unit volume W is given by

W =
3

2
n eT

with particle number density n in m−3 and particle temperature T in eV. PROCESS assumes that the
electron and ion energy confinement times τE are equal.

Many energy confinement time scaling laws are present within PROCESS, for tokamaks, RFPs or
stellarators. These are calculated in routine PCOND. The value of isc determines which of the scalings
is used in the plasma energy balance calculation (Section 3.1.2.11). Table 3.1 summarises the available
scaling laws. The most commonly used is the so-called IPB98(y,2) scaling.

Effect of radiation on energy confinement

Published confinement scalings are all based on low radiation pulses. A power plant will certainly be
a high radiation machine — both in the core, due to bremsstrahlung and synchrotron radiation, and
in the edge due to impurity seeding. The scaling data do not predict this radiation — that needs to be
done by the radiation model. However, if the transport is very “stiff”, as predicted by some models,
then the additional radiation causes an almost equal drop in power transported by ions and electrons,
leaving the confinement nearly unchanged.

To allow for these uncertainties, three options are available, using the switch iradloss. In each case,
the particle transport loss power Ploss (Equation 3.21), referred to in the code as pscaling, is derived
directly from the energy confinement scaling law (see 3.1.2.10 and Figure 3.4 above).

iradloss = 0: Total power lost is scaling power plus radiation:

pscaling + pradpv = falpha*palppv + pchargepv + pohmpv + pinjmw/vol

iradloss = 1: Total power lost is scaling power plus core radiation only:

pscaling + pcoreradpv = falpha*palppv + pchargepv + pohmpv + pinjmw/vol

Chapter 3 Physics, Engineering and Other Models 36

isc scaling law reference

1 Neo-Alcator (ohmic) [16]
2 Mirnov (H-mode) [16]
3 Merezhkin-Muhkovatov (L-mode) [16]
4 Shimomura (H-mode) JAERI-M 87-080 (1987)
5 Kaye-Goldston (L-mode) Nuclear Fusion 25 (1985) p.65
6 ITER 89-P (L-mode) Nuclear Fusion 30 (1990) p.1999
7 ITER 89-O (L-mode) [16]
8 Rebut-Lallia (L-mode) Plasma Physics and Controlled Nuclear Fusion Research

2 (1987) p. 187
9 Goldston (L-mode) Plas. Phys. Controlled Fusion 26 (1984) p.87
10 T10 (L-mode) [16]
11 JAERI-88 (L-mode) JAERI-M 88-068 (1988)
12 Kaye-Big Complex (L-mode) Phys. Fluids B 2 (1990) p.2926
13 ITER H90-P (H-mode)
14 ITER Mix (minimum of 6 and 7)
15 Riedel (L-mode)
16 Christiansen et al. (L-mode) JET Report JET-P (1991) 03
17 Lackner-Gottardi (L-mode) Nuclear Fusion 30 (1990) p.767
18 Neo-Kaye (L-mode) [16]
19 Riedel (H-mode)
20 ITER H90-P (amended) Nuclear Fusion 32 (1992) p.318
21 Large Helical Device (stellarator) Nuclear Fusion 30 (1990) p.11
22 Gyro-reduced Bohm (stellarator) Bull. Am. Phys. Society, 34 (1989) p.1964
23 Lackner-Gottardi (stellarator) Nuclear Fusion 30 (1990) p.767
24 ITER-93H (H-mode) Plasma Physics and Controlled Nuclear Fusion Research

(Proc. 15th Int. Conf., Seville, 1994) IAEA-CN-60/E-P-3
25 TITAN (RFP) TITAN RFP Fusion Reactor Study, Scoping Phase Report

UCLA-PPG-1100, page 5–9, Jan 1987
26 ITER H-97P ELM-free (H-mode) J. G. Cordey et al., EPS Berchtesgaden, 1997
27 ITER H-97P ELMy (H-mode) J. G. Cordey et al., EPS Berchtesgaden, 1997
28 ITER-96P (= ITER97-L) (L-mode) Nuclear Fusion 37 (1997) p.1303
29 Valovic modified ELMy (H-mode)
30 Kaye PPPL April 98 (L-mode)
31 ITERH-PB98P(y) (H-mode)
32 IPB98(y) (H-mode) Nuclear Fusion 39 (1999) p.2175
33 IPB98(y,1) (H-mode) Nuclear Fusion 39 (1999) p.2175
34 IPB98(y,2) (H-mode) Nuclear Fusion 39 (1999) p.2175
35 IPB98(y,3) (H-mode) Nuclear Fusion 39 (1999) p.2175
36 IPB98(y,4) (H-mode) Nuclear Fusion 39 (1999) p.2175
37 ISS95 (stellarator) Nuclear Fusion 36 (1996) p.1063
38 ISS04 (stellarator) Nuclear Fusion 45 (2005) p.1684
39 DS03 (H-mode) Plasma Phys. Control. Fusion 50 (2008) 043001, equation 4.13
40 Non-power law A. Murari et al 2015 Nucl. Fusion 55 073009,

doi:10.1088/0029-5515/55/7/073009 Table 4.

Table 3.1: Summary of the energy confinement time scaling laws in PROCESS.

Chapter 3 Physics, Engineering and Other Models 37

iradloss = 2: Total power lost is scaling power only, with no additional allowance for radiation.
This is not recommended for power plant models.

pscaling = falpha*palppv + pchargepv + pohmpv + pinjmw/vol

3.1.2.11 Plasma core power balance

Figure 3.5 shows the flow of power as calculated by the code. (Figure 3.9 shows an alternative view
of the power transfer outside the reactor core.)

Figure 3.5: Power flows

The primary sources of power are the fusion reactions themselves, ohmic power due to resistive heating
within the plasma, and any auxiliary power provided for heating and current drive (see Section 3.1.9).
The power carried by the fusion-generated neutrons is lost from the plasma, but is deposited in the
surrounding material (see Section 3.1.12). A fraction falpha of the alpha particle power is assumed
to stay within the plasma core to contribute to the plasma power balance. The sum of this core alpha
power, any power carried by non-alpha charged particles, the ohmic power and any injected power,
is converted into charged particle transport power (Ploss in Equation 3.21) plus core radiation power
(see Section 3.1.2.7), as shown in Figure 3.5.

The core power balance calculation is turned on using constraint equation no. 2 (which should therefore
always be used).

3.1.2.12 Bootstrap current scalings

The fraction of the plasma current provided by the so-called bootstrap effect can be either input into
the code directly, or calculated using one of four methods, as summarised here. Note that methods
ibss = 1 to 3 use fits to parabolic density and temperature profiles, and do not take into account the
existence of pedestals (ipedestal = 1), whereas the Sauter et al. scaling (ibss = 4) allows general
profiles to be used.

• Direct input: To input the bootstrap current fraction directly, set bscfmax to (−1) times the
required value.

Chapter 3 Physics, Engineering and Other Models 38

• ITER scaling [16]: To use the ITER scaling method for the bootstrap current fraction, set ibss
= 1, and bscfmax to the maximum required bootstrap current fraction (≤ 1). This method is
valid at high aspect ratio only.

• General scaling [26]: To use a more general scaling method, set ibss = 2, and bscfmax to the
maximum required bootstrap current fraction (≤ 1).

• Numerically fitted scaling [27]: To use a numerically fitted scaling method, valid for all aspect
ratios, set ibss = 3, and bscfmax to the maximum required bootstrap current fraction (≤ 1).

• Sauter, Angioni and Lin-Liu scaling [28, 29]: Set ibss = 4, and bscfmax to the maximum
required bootstrap current fraction (≤ 1).

3.1.2.13 L-H power threshold scalings

Transitions from a standard confinement mode (L-mode) to an improved confinement regime (H-
mode), called L-H transitions, are observed in most tokamaks. A range of scaling laws are available
that provide estimates of the auxiliary power required to initiate these transitions, via extrapolations
from present-day devices. PROCESS calculates these power threshold values for the scaling laws listed
in Table 3.2, in routine PTHRESH.

To enforce one of these scalings, use input parameter ilhthresh to select the scaling to use, and turn
on constraint equation no. 23 with iteration variable no. 104 (flhthresh). By default, this will ensure
that the power reaching the divertor is at least equal to the threshold power calculated for the chosen
scaling, which is a necessary condition for H-mode. However, for L-mode it might be appropriate
to set boundl(104) = 0.001, boundu(104) = 1.0, which will ensure that the power threshold does
not exceed the calculated value, and therefore the machine cannot reach H-mode.

name reference
(1) 1996 ITER scaling: nominal ITER Physics Design Description Document,
(2) 1996 ITER scaling: upper bound D. Boucher, p.2-2
(3) 1996 ITER scaling: lower bound
(4) 1997 ITER scaling, excluding elongation J. A. Snipes, ITER H-mode Threshold Database
(5) 1997 ITER scaling, including elongation Working Group, Controlled Fusion and Plasma

Physics, 24th EPS Conference, Berchtesgaden,
June 1997, vol.21A, part III, p.961

(6) 2008 Martin scaling: nominal Martin et al, 11th IAEA Tech. Meeting on H-mode
(7) 2008 Martin scaling: 95% upper bound Physics and Transport Barriers, Journal of Physics:
(8) 2008 Martin scaling: 95% lower bound Conference Series 123 (2008) 012033

Table 3.2: Summary of the L-H power threshold scalings implemented in PROCESS.

3.1.2.14 Other plasma physics options

Neo-classical correction effects

Switch ires controls whether neo-classical (trapped particle) effects [30] are included in the calculation
of the plasma resistance and ohmic heating power in routine POHM, which is called by routine PHYSICS.
If ires = 1, these effects are included. Note that the scaling used is only valid for aspect ratios
between 2.5 and 4, and it is possible for the plasma resistance to be wrongly calculated as negative if
ires = 1 and the aspect ratio is too high.

Chapter 3 Physics, Engineering and Other Models 39

Inverse quadrature in τE scaling laws

Switch iinvqd determines whether the energy confinement time scaling laws (see Section 3.1.2.10) due
to Kaye-Goldston (isc = 5) and Goldston (isc = 9) should include an inverse quadrature scaling
with the Neo-Alcator result (isc = 1). A value iinvqd = 1 includes this scaling.

Plasma / first wall gap

The region directly outside the last closed flux surface of the core plasma is known as the scrape-off
layer, and contains no structural material. Plasma entering this region is not confined and is removed
by the divertor. PROCESS treats the scrape-off layer merely as a gap. Switch iscrp determines whether
the inboard and outboard gaps should be calculated as 10% of the plasma minor radius (iscrp = 0),
or set equal to the input values scrapli and scraplo (iscrp = 1).

3.1.3 Armour, first wall and breeding blanket

The surface facing the plasma is a thin layer of a material highly resistant to melting and erosion,
such as tungsten, referred to ”armour”. It is cooled by conduction to the first wall underneath.

The first wall sits behind the armour, and is dedicated to removing the heat landing on the armour.
It does not breed tritium. Due to the hostile environment the first wall and armour have only a
short lifetime and therefore need to be replaced regularly. It is cooled either by gaseous helium or by
pressurised liquid water, depending on the selection of blanket type using the switch blkttype – see
Section 3.1.3.1.

Wall load calculation

Switch iwalld determines whether the neutron wall load (power per unit area) should be calculated
using the plasma surface area (iwalld = 1) or the first wall area (iwalld = 2) as the denominator.
In the former case, input parameter ffwal (default value 0.92) can be used to scale the neutron power
reaching the first wall.

The breeding blanket performs a number of tasks. An incoming neutron from a deuterium-tritium
(D-T) fusion reaction in the plasma loses energy in the blanket. This energy is removed by the blanket
coolant and used to produce electricity. The neutron may also react with a lithium nucleus present
in the blanket to produce (“breed”) a tritium nucleus which can be re-used as fuel. The competing
requirements of heating and tritium synthesis mean that a neutron multiplier must be present, to
ensure balance between tritium destruction and creation. The blanket therefore contains beryllium
to fulfil this purpose. As with the first wall, the blanket has a relatively short lifetime because of the
high neutron fluence.

3.1.3.1 Blanket model options

The models used for the thermoydraulics of the first wall, the profile of deposition of the neutron
energy, tritium breeding, and conversion of heat to electricity have been revised extensively.

iblanket: This switch selects between different types of blanket.

In the CCFE HCPB (helium-cooled pebble bed) model (iblanket = 1), the energy deposition
in the armour and first wall, blanket and shield are calculated using parametric fits to an MCNP

Chapter 3 Physics, Engineering and Other Models 40

neutron and photon transport model of a sector of a tokamak. The blanket contains lithium
orthosilicate Li4SiO4, titanium beryllide TiBe12, helium and Eurofer steel.

The KIT HCPB model (iblanket = 2) allows the energy multiplication factor emult, the
shielding requirements and tritium breeding ratio to be calculated self-consistently with the
blanket and shielding materials and sub-assembly thicknesses, and for constraints to be applied
to satisfy the engineering requirements. For further details of this model, see Section 3.1.3.2.

The CCFE HCPB model with tritium breeding ratio (iblanket = 3) has the features of the
CCFE HCPB model above, with a set of fitting functions for calculating tritium breeding ratio
(TBR). It requires a choice of iblanket thickness, specifiying a THIN, MEDIUM or THICK
blanket. This fixes the values of inboard and outboard blanket thickness, and the initial values
of first wall thickness (3 cm) and first wall armour (3 mm). Note that these last two can be
modified by the first wall thermohydraulic module, in which case the output will not be fully
self-consistent. The lithium-6 enrichment and the breeder fraction (Li4SiO4/(Be12Ti+Li4SiO4)
by volume) are available as iteration variables, and the minimum TBR can be set as a constraint.
The maximum values of TBR achievable are as follows:
Thin: 1.247, Medium: 1.261, Thick: 1.264.

secondary cycle : This switch controls how the coolant pumping power in the first wall and blanket
is determined, and also how the calculation of the plant’s thermal to electric conversion efficiency
(the secondary cycle thermal efficiency) proceeds. See Section 3.1.12.

3.1.3.2 KIT Blanket neutronics model

The model used if blktmodel = 1 is based on the Helium-Cooled Pebble Bed (HCPB) blanket concept
developed by KIT (a second advanced model — Helium-Cooled Lithium Lead, HCLL — will be
implemented in due course). The blanket, shield and vacuum vessel are segmented radially into a
number of sub-assemblies. Moving in the direction away from the plasma/first wall, these are:

• Breeding Zone (BZ) (which includes the first wall), with radial thicknesses (inboard and
outboard, respectively) fwith+blbuith, fwoth+blbuoth. This consists of beryllium (with
fraction by volume fblbe), breeder material (fblbreed), steel (fblss) and helium coolant.
Three forms of breeder material are available: lithium orthosilicate (Li4SiO4) (chosen by setting
breedmat = 1), lithium metatitanate (Li2TiO3) (breedmat = 2) or lithium zirconate (Li2ZrO3)
(breedmat = 3). The 6Li enrichment percentage may be modified from the default 30% using
input parameter li6enrich.

• Box Manifold (BM), with radial thicknesses (inboard and outboard, respectively) blbmith,
blbmoth and helium fractions fblhebmi, fblhebmo (the rest being steel).

• Back Plate (BP), with radial thicknesses (inboard and outboard, respectively) blbpith, blbpoth
and helium fractions fblhebpi, fblhebpo (the rest being steel).

Together, the BZ, BM and BP make up the ‘blanket’, with total radial thicknesses blnkith

(inboard) and blnkoth (outboard), and void (coolant) fraction vfblkt; Note that these
quantities are calculated from the sub-assembly values if blktmodel > 0, rather than being
input parameters.

• Low Temperature Shield and Vacuum Vessel (lumped together for these calculations), with radial
thicknesses (inboard and outboard, respectively) shldith+ddwi, shldoth+ddwi and water
coolant fraction vfshld (the rest being assumed to be steel for its mass calculation; the neutronics

Chapter 3 Physics, Engineering and Other Models 41

model assumes that the shield contains 2% boron as a neutron absorber, but this material is not
explicitly mentioned elsewhere in the code — so its cost is not calculated, for example).

N.B. The fact that water is assumed to be the coolant in the shield, whereas helium is the coolant
in the blanket, leads to an inconsistency when specifying the coolant type via switch coolwh (see
Section 3.1.3.1). At present we mitigate this by forcing coolwh=2 (making water the coolant), as
in this case the coolant mass and pumping costs are higher, giving the more pessimistic solution
with regards to costs.

A few other input parameters are useful for tuning purposes, as follows:

• fvolsi and fvolso are the area (and volume) coverage factors for the inboard and outboard
shields, respectively.

• fvoldw is a multiplier for the volume of the vacuum vessel, used in the item’s mass calculation
to account for ports, etc.

• npdiv is the number of divertor ports, used in the calculation of the tritium breeding ratio.

• nphcdin and nphcdout are the number of heating/current drive ports on the inboard and
outboard sides, respectively, used in the calculation of the tritium breeding ratio. These may be
either ‘small’ (hcdportsize = 1) or ‘large’ (hcdportsize = 2).

• wallpf is the neutron wall load peaking factor (maximum/mean), used in the calculation of the
blanket lifetime.

• ucblbreed is the unit cost ($/kg) of the breeder material.

KIT model outputs and available constraints

The KIT blanket neutronics model provides the following outputs:

• The total nuclear power deposited in the blanket and shield, pnucblkt and pnucshld,
respectively, and the energy multiplication factor in the blanket, emult aref calculated.

• The tritium breeding ratio, tbr. This can be constrained to be no less than a certain value tbrmin
for tritium self-sufficiency by turning on constraint equation no. 52 with iteration variable no.
89 (ftbr). The inboard and outboard blanket BZ thicknesses, blbuith and blbuoth can also
be used as iteration variables (90 and 91, respectively) to help the constraint to be met.

• The tritium production rate in grammes/day is calculated.

• The fast neutron fluence (neutrons/m2) on the TF coils is calculated. The peak value of this
quantity may be constrained to be no more than a maximum value nflutfmax by turning on
constraint equation no. 53 with iteration variable no. 92 (fflutf). The inboard and outboard
shield thicknesses, shldith and shldoth can also be used as iteration variables (93 and 94,
respectively) to help the constraint to be met. (Note that in this calculation the TF coil case
surrounding the superconductor winding pack is ignored.)

• The nuclear heating power (MW/m3) on the inboard and outboard TF coils is calculated. Again,
this can be limited to be no more than a maximum value ptfnucmax by turning on constraint
equation no. 54 with iteration variable no. 95 (fptfnuc). The inboard and outboard shield
thicknesses also help this constraint to be met. (Note that in this calculation the TF coil case
surrounding the superconductor winding pack is ignored.) This constraint equation may also be
used with blktmodel = 0.

Chapter 3 Physics, Engineering and Other Models 42

• The helium concentration in the vacuum vessel at the end of the plant lifetime is calculated.
This needs to be constrained for re-weldability purposes, and can be kept below a maximum
value vvhealw by turning on constraint equation no. 55 with iteration variable no. 96 (fvvhe).

• The blanket lifetime is calculated, assuming a maximum allowable level of neutron damage to its
steel of 60 dpa (currently not adjustable). (For the blktmodel = 0 model, the allowable blanket
fluence abktflnc in MW-years/m2 may be input.)

3.1.4 Shield

The shield reduces the neutron flux reaching the vacuum vessel, TF coils and beyond. This minimises
the radiological impact of the neutrons, and their heating of the TF coils which, if superconducting,
need to remain at liquid helium temperatures. As with the blanket the energy deposited in the coolant
may or may not be used to produce electricity, depending on the value of the switch iprimshld . The
shield coolant fraction by volume is set via the input parameter vfshld.

The inboard and outboard shield thicknesses (shldith and shldoth, respectively) may be used as
iteration variables.

3.1.5 Divertor

The divertor provides a means of removing plasma reaching the scrape-off layer. The principal outputs
from the code are the divertor heat load, used to determine its lifetime, and its peak temperature.
The divertor is cooled either by gaseous helium or by pressurised water.

Switch snull controls the overall plasma configuration. Setting snull = 0 corresponds to an up-down
symmetric, double null configuration, while snull = 1 (the default) assumes a single null plasma with
the divertor at the bottom of the machine. The vertical build (see Figure 3.3) and PF coil current
scaling algorithms take the value of this switch into account, although not the plasma geometry at
present.

The Harrison-Kukushkin-Hotston divertor model [16] developed for ITER is available, but is unlikely
to be relevant for a reactor.

3.1.6 Toroidal field coils

The toroidal field (TF) coils can be either resistive or superconducting. Switch itfsup should be set
to 1 for superconducting coils, or 0 for purely copper coils. In the superconductor model, the CICC
(Conductor In Cable Conduit) structure shown in Figure 3.6 is assumed, and the coils are cooled using
a liquid helium cryogenic system.

The steel radial plates shown in the figure help in the winding process and also provide extra support
against tangential stresses. Iteration variable no. 101 (prp) is the ratio of the total radial plate plus
steel cap cross-sectional area within the winding pack to the total winding pack cross-sectional area;
from this, the half-thickness trp is calculated.

The outboard leg of the TF coil is assumed to be the same width in the toroidal direction as the outside
edge of the inboard leg. In the radial direction, for resistive TF coils the input parameter tfootfi

gives the ratio of the outboard leg thickness to the inboard leg thickness tfcth; for superconducting
coils the outboard thickness is set equal to the inboard thickness.

Each TF coil is defined in the (R, Z) plane by a straight section and four elliptical arcs. Because of the
finite number of TF coils used in a tokamak (18 for ITER), the toroidal field has a ripple introduced

Chapter 3 Physics, Engineering and Other Models 43

View from above

cable space

conduit insulation
steel conduit case

radial plate

radial plate

st
ee

l c
ap

st
ee

l c
ap

2*trp

Single turn

assigned to each turn)
plates and steel caps

(half−thickness of radial 2*trp

layer

Ground wall

case
external

insulation

steel

coolant fraction

(1−vftf)
conductor fraction

vftf

thwcndut

Pack

thicndut

Winding

thkwp

wwp2

tinstf

casthi

casths

casths

tfcth

wwp1

thkcas

rtfcin

Figure 3.6: Schematic diagram of the cross-section of the inboard leg of a superconducting TF coil,
showing the CICC (Conductor In Cable Conduit) construction. The winding pack contains many turns
of cable conduit. The cable space contains the superconducting filaments, and circulating liquid helium
coolant. The variables shown in red may be changed by the user, and those in italics may be chosen
as iteration variables.

Chapter 3 Physics, Engineering and Other Models 44

into it, the amplitude of which can be limited to a few percent (given by input parameter ripmax,
default value 1%) by the code by adjusting the outboard gap thickness (labelled gapsto in Figures 3.1
and 3.2).

Among the TF coil parameters calculated by the code are the maximum allowable current density,
the stresses on the structure, the energy stored and the magnetic field produced by the coils.

The following options are available within the superconducting TF coil model (itfsup = 1).

3.1.6.1 Superconducting materials

Switch isumattf specifies which superconducting material is to be used:

isumattf = 1 : Nb3Sn superconductor, ITER critical surface parameterization [33], standard critical
values

isumattf = 2 : Bi-2212 high temperature superconductor

isumattf = 3 : NbTi superconductor

isumattf = 4 : Nb3Sn superconductor, ITER critical surface parameterization [33], user-defined
critical parameters

The fraction of copper present in the superconducting filaments is given by the value of variable
fcutfsu (iteration variable no. 59).

For isumattf = 2, a technology adjustment factor fhts may be used to modify the critical current
density fit for the Bi-2212 superconductor, to describe the level of technology assumed (i.e. to account
for stress, fatigue, radiation, AC losses, joints or manufacturing variations). The default value for
fhts is 0.5 (a value of 1.0 would be very optimistic).

For isumattf = 4, important superconductor properties may be input by the user as follows: the
upper critical field at zero temperature and strain is set using input parameter bcritsc, and the
critical temperature at zero field and strain is set using input parameter tcritsc.

3.1.6.2 Current density limits

The current in the TF coils must be sufficient to produce the required toroidal field at the centre of
the plasma. In tokamaks, the field falls off at a rate 1/R, with the peak value occurring at the outer
edge of the inboard portion of the TF coil winding pack (Rmax TF = rbmax). The maximum TF coil
current depends on the field it produces and the allowable current density.

Three constraints are relevant to the operating current density Jop in the (superconducting) TF coils.

• To ensure that Jop does not exceed the critical value Jcrit, constraint equation no. 33 should be
turned on with iteration variable no. 50 (fiooic).

• To ensure that Jop does not exceed the current density protection limit, constraint equation no.
35 should be turned on with iteration variable no. 53 (fjprot).

• The critical current density Jcrit falls with the temperature of the superconductor. The
temperature margin ∆T is the difference between the temperature at which Jcritwould be equal to
Jop and the operating temperature. The minimum allowed ∆T can be set using input parameter
tmargmin together with constraint equation no. 36 and iteration variable no. 54 (ftmargtf).

Chapter 3 Physics, Engineering and Other Models 45

Note that if the temperature margin is positive, Jop is guaranteed to be lower than Jcrit, and
so constraints 33 and 36 need not both be turned on (in fact, it is recommended that only one
of these two constraints is activated in any given run).

3.1.6.3 Stress model

Switch tfc model controls whether a simple stress model (tfc model = 0, suitable for solid copper
TF coils) or a more complex stress model (tfc model = 1) should be used. If tfc model = 1, a
two-layer stress model [35] developed by CCFE is used.

To enforce the stress limits calculated using either of these models, constraint equation no. 31 (case
stress) and/or constraint equation no. 32 (conduit stress) should be turned on with iteration variables
no. 48 (fstrcase) and/or no. 49 (fstrcond), respectively. The stress limit is set using input parameter
alstrtf.

3.1.7 Poloidal field coils

The poloidal field (PF) coils are used initially to cancel the vertical field produced at the centre of
the plasma by the central solenoid (Section 3.1.8) during start-up, and then to maintain the plasma
position and shape during the flat-top period.

3.1.7.1 PF coil positions

The positions and sizes of the PF coils are partly input, and partly calculated after consideration of
the required currents and allowable current density.

The PF coil locations are controlled using a set of switches stored in array ipfloc (see Figure 3.1),
and are calculated in routine PFCOIL. The coils are (usually) organised into groups containing two PF
coils placed symmetrically above and below the midplane, and each group j has an element ipfloc(j)
assigned to it. Input parameter ngrp should be set to the number of groups, and ncls(j) should be
assigned the number of coils in each group — which should be 2 in each case.

In the following, all variables are defined in the variable descriptor file vardes.html. The values for
rpf1, rpf2, zref(j) and routr should be adjusted by the user to locate the PF coils accurately.

The three possible values of ipfloc(j) correspond to the following PF coil positions: (Redo taking
into account snull and other recent changes e.g. rclsnorm)

ipfloc(j) = 1 : PF coils are placed above the central solenoid (one group only);

R = rohc + rpf1

Z = ±(hmax ∗ ohhghf + 0.1 + 0.5 ∗ (hmax ∗ (1− ohhghf) + tfcth + 0.1))

ipfloc(j) = 2 : PF coils are placed above the TF coils (one group only);

R = rmajor + rpf2 ∗ triang ∗ rminor

Z = ±(hmax + tfcth + 0.86)

ipfloc(j) = 3 : PF coils are placed radially outside the TF coils (any number of groups (?));

R = rtot + tfthko/2 + routr

Z = ±(rminor ∗ zref(j))

The void fraction (for coolant) in each coil i’s winding pack is given by vf(i).

Chapter 3 Physics, Engineering and Other Models 46

3.1.7.2 PF coil currents

The peak current per turn, cptdin(i), and the winding pack peak current density rjconpf(i) in each
PF coil i are inputs. The PF coil currents vary as a function of time during the tokamak operation
as indicated in Figure 3.7. They contribute part of the flux swing necessary to maintain the plasma
current (see Section 3.1.8).

beginning of pulse

start of flat top

time

...

cu
rr

en
t

end of flat top

plasma

PF coil

ramp heat quench dwellburnIp ramp−up

central solenoid

Figure 3.7: Plot showing schematically the current waveforms for the plasma, a typical PF coil, and
the central solenoid. Note that the currents in some of the PF coils may be the opposite sign to that
shown, and the central solenoid current may remain positive during the Ip ramp-up period, although
it will pass through zero during the burn phase.

3.1.7.3 PF coil material

The PF coils can be either resistive or superconducting. This is determined from the value of ipfres.
If ipfres = 0, the PF coils and the central solenoid are assumed to be superconducting. If ipfres

= 1, they are assumed to be resistive, with their resistivity given by the value of variable pfclres.

If ipfres = 0, switch isumatpf specifies which superconducting material is to be used for the PF
coils. The values for isumatpf are used in the same way as switch isumattf is for the TF coils (see
Section 3.1.6.1).

The fraction of copper present in the superconducting filaments is given by the value of variable
fcupfsu.

If the PF coils are superconducting, a steel case is assumed to surround the current-carrying winding
pack to take the hoop stress. Its cross-sectional area is determined by the J × B hoop force on the

Chapter 3 Physics, Engineering and Other Models 47

coil divided by the allowable hoop stress, given by input parameter sigpfcalw. The input parameter
sigpfcf provides a scale factor (default is 0.666) to adjust the hoop force if required, to indicate what
proportion of the force is supported by the case.

3.1.8 Central solenoid

Formerly known as the ohmic heating (OH) coil, the central solenoid is a PF coil used during start-up
and during the burn phase to create and maintain the plasma current by inductive means. Swinging
(changing) the current through the central solenoid causes a change in the flux linked to the plasma
region, inducing a current in it. PROCESS calculates the amount of flux required to produce the plasma
current, and also the amount actually available. The code measures the magnetic flux in units of
Volt-seconds (= Webers).

Switch iohcl controls whether a central solenoid is present. A value of 1 denotes that this coil is
present, and should be assigned a non-zero thickness ohcth. A value of iohcl = 0 denotes that no
central solenoid is present, in which case the thickness ohcth should be set to zero. No PF coils should
be located at positions defined by ipfloc(j) = 1 if no central solenoid is present.

The central solenoid can be either resistive or superconducting (controlled via switch ipfres as
for the other PF coils), and if superconducting, switch isumatoh determines the superconducting
material to use — its value is used like isumattf and isumatpf. The fraction of copper present in
the superconducting filaments is given by the value of variable fcuohsu.

If the central solenoid is superconducting, the coil contains steel for strength. The cross-sectional area
of steel is determined by the J ×B hoop force on the coil divided by the allowable hoop stress, given
by the input alstroh. A steel thickness is given in the output, which would be the thickness of a steel
case of the same cross-sectional area if it simply surrounded the conducting region.

3.1.8.1 Current density inputs and limits

The (absolute value of the) central solenoid current density at the end-of-flat-top (‘EOF’), coheof
is specified by the user, and can be used as an iteration variable (no. 37). The current density at
the beginning-of-pulse (‘BOP’ — see Figure 3.7) is specified as a (positive) fraction of coheof using
fcohbop (iteration variable no. 41). The current density in the CS at all other times is calculated by
taking account of the flux swing necessary to initiate and maintain the plasma current. The positive
or negative sign of the current at each time is calculated automatically.

The current density in the central solenoid can be limited at the BOP and at the EOF. To limit the
current density at the BOP, constraint equation no. 27 should be turned on with iteration variable no.
39 (fjohc0). To limit the current density at the EOF, constraint equation no. 26 should be turned
on with iteration variable no. 38 (fjohc).

As for the TF coils, the critical current density Jcrit falls with the temperature of the superconductor.
The temperature margin ∆T is the difference between the temperature at which Jcritwould be equal
to Jop and the operating temperature. The minimum allowed ∆T can be set using input parameter
tmargmin together with constraint equation no. 60 and iteration variable no. 106 (ftmargoh).

Note that if the temperature margin is positive, Jop is guaranteed to be lower than Jcrit, and so
constraints 26, 27 and 60 need not all be turned on (in fact, it is recommended that EITHER the
latter constraint, OR the former two constraints, is/are activated in any given run).

Chapter 3 Physics, Engineering and Other Models 48

3.1.8.2 Plasma current ramp-up time

In the steady-state power plant scenario (lpulse 6= 1 — see Section 3.3), the length of time taken for
the central solenoid current to (possibly) reverse (which is equal to the plasma current ramp-up time
— see Figure 3.7) is determined from the value of switch tohsin. If tohsin = 0, then the plasma
current ramp-up time tohs in seconds is given by tohs = Ip/0.5, where Ip is the plasma current in
MA. Furthermore, the PF coil ramp time tramp and shutdown time tqnch are set equal to tohs. If
tohsin 6= 0, the plasma current ramp-up time tohs = tohsin, and the PF coil ramp and shutdown
times are input parameters.

If, however, a pulsed power plant is being modelled (lpulse = 1), the plasma current ramp-up time
tohs is either an input parameter, or it can be iterated by using iteration variable 65. The ramp
and shutdown times in the pulsed case are always set equal to tohs. To ensure that the plasma
current ramp rate during start-up is prevented from being too high, as governed by the requirement
to maintain plasma stability by ensuring that the induced current has time to diffuse into the body
of the plasma, constraint equation no. 41 should be turned on with iteration variable no. 66 (ftohs).

3.1.9 Auxiliary power systems: heating and current drive

3.1.9.1 Current Drive

The use of inductive current drive leads to pulsed plant operation because of the limited flux swing that
can be achieved using the central solenoid. This poses problems due to the fact that fatigue failures
may result, and there would also be a need for thermal storage to maintain output of electricity
between pulses, and supply power for starting a new pulse. However, the plasma current can also be
produced and maintained (partially or wholly) using non-inductive means which, in principle, removes
this restriction. PROCESS contains a number of auxiliary current drive schemes, including various RF
methods (Lower Hybrid, Electron Cyclotron, and Ion Cyclotron (Fast Wave) current drives) and
also Neutral Beam current drive systems. The code calculates the efficiency and the resulting power
requirements of the chosen system.

The fraction of the required plasma current to be produced by non-inductive means, fvsbrnni, should
be set, and flag irfcd should be set to 0 for purely inductive scenarios, or 1 otherwise. The current
drive efficiency model to be used in this latter case is defined by the value of switch iefrf:-

iefrf = 1 : Fenstermacher Lower Hybrid model

iefrf = 2 : Ion cyclotron model [16]

iefrf = 3 : Fenstermacher electron cyclotron resonance model

iefrf = 4 : Ehst Lower Hybrid model

iefrf = 5 : ITER neutral beam model [16, 17]

iefrf = 6 : Culham Lower Hybrid model [17]

iefrf = 7 : Culham electron cyclotron model [17]

iefrf = 8 : Culham neutral beam model [17]

iefrf = 9 : Oscillating Field current drive (RFPs only — see Section 3.6.1.5)

Chapter 3 Physics, Engineering and Other Models 49

(Note that, at present, the neutral beam models do not include the effect of an edge transport barrier
(pedestal) in the plasma profile.)

It is sometimes useful to adjust artificially the current drive efficiency values produced by these
routines. This can be achieved by setting the scaling coefficient feffcd. The wall plug to plasma
efficiencies can also be adjusted, by changing the relevant variable (etaech, etalh, etanbi or etaof).

3.1.9.2 Plasma heating

In addition to current drive, some auxiliary power can be used purely to heat the plasma. The value
of input parameter pheat determines the amount of auxiliary heating power (in Watts) to be applied
to the plasma. This variable may be used as an iteration variable (no. 11).

3.1.9.3 Neutral beam access

If present, a neutral beam injection system needs sufficient space between the TF coils to be able to
intercept the plasma tangentially. The major radius rtanbeam at which the centreline of the beam is
tangential to the toroidal direction is user-defined using input parameter frbeam, which is the ratio
of rtanbeam to the plasma major radius rmajor. The maximum possible tangency radius rtanmax is
determined by the geometry of the TF coils — see Figure 3.8, and this can be enforced using constraint
equation no. 20 with iteration variable no. 33 (fportsz). The thickness of the beam duct walls may
be set using input parameter nbshield.

3.1.9.4 Neutral beam losses

Input parameter forbitloss can be used to specify the fraction of the net injected neutral beam power
that is lost between the beam particles’ ionisation and thermalisation (known as the first orbit loss).
This quantity cannot easily be calculated as it depends on the field ripple and other three-dimensional
effects. The power lost is assumed to be absorbed by the first wall.

The power in the beam atoms that are not ionised as they pass through the plasma (shine-through)
is calculated by the code. There are two constraint equations that can be used to control the beam
penetration and deposition, as follows:

• It is necessary to use a beam energy that simultaneously gives adequate penetration of the beam
to the centre of the plasma and tolerable shine-through of the beam on the wall after the beam
has traversed the plasma. The number of exponential decay lengths, τ , for the beam power
to fall before it reaches the plasma centre should be in the region of ∼ 4–6 [17, Section 4.3.2].
Constraint equation no. 14 may be used to force τ to be equal to the value given by input
parameter tbeamin, and is therefore in effect a beam energy consistency equation.

• Alternatively, constraint equation no. 59 with iteration variable no. 105 (fnbshinef) may be
used to ensure that the beam power fraction emerging from the plasma is no more than the
value given by input parameter nbshinefmax.

It is recommended that only one of these two constraint equations is used during a run.

Chapter 3 Physics, Engineering and Other Models 50

beam

TF coil

a

f g

b

d

c

tanmax
r

φ Ω θ
e

h

coilTF

ε α

ε

Figure 3.8: Top-down schematic view of the neutral beam access geometry. The beam with the
maximum possible tangency radius is shown here.

Chapter 3 Physics, Engineering and Other Models 51

3.1.9.5 Ignited plasma

Switch ignite can be used to denote whether the plasma is ignited, i.e. fully self-sustaining without
the need for any injected auxiliary power during the burn. If ignite = 1, the calculated injected
power does not contribute to the plasma power balance (Section 3.1.2.11), although the cost of the
auxiliary power system is taken into account (the system is then assumed to be required to provide
heating etc. during the plasma start-up phase only — use pheat to indicate the power requirement).
If ignite = 0, the plasma is not ignited, and the auxiliary power is taken into account in the plasma
power balance during the burn phase. Also, constraint equation no. 28 can be turned on to enforce
the fusion gain Q to be at least bigqmin.

3.1.10 Structural components

Structural components are required to provide support for the fusion power core systems against
gravity and the magnetic forces that will be encountered during operation. The required structural
masses and their costs are calculated.

3.1.11 Cryostat and vacuum system

The internal vacuum vessel provides a toroidal evacuated chamber containing the plasma, first wall,
blanket and shield, and the space between this item and the external cylindrical cryostat encloses those
components that need to operate at liquid helium temperatures. These include any superconducting
(TF or PF) coils and the inter-coil structure. PROCESS calculates the cryogenic power load and the
resulting heat exchanger requirements.

The vertical distance h between the uppermost PF coil and the external cryostat lid may be adjusted
by changing the value of input parameter clhsf; a scaling based on ITER is used:

h = clhsf

(

2 × rdewex

28.440

)

(3.22)

The vacuum system is used for four different processes. Firstly, before plasma operations the chamber
must be evacuated to remove outgassed impurities from the structure. Secondly, the chamber must
be re-evacuated between burn operations. Thirdly, helium ash must be removed to prevent it from
diluting the fuel. Finally, deuterium and tritium is removed on a steady state basis. PROCESS calculates
the parameters of a vacuum system that satisfy all four requirements, with the option of either turbo
pumps or cryo pumps being used.

Switch ntype controls whether a turbopump (ntype = 0) or a cryopump (ntype = 1) is used in the
vacuum system.

3.1.12 Power conversion and heat dissipation systems

The PROCESS power plant takes into account all the systems required to perform the necessary
conversion of fusion power to electricity, from the coolant systems in the plant components to the
heat exchangers and turbines.

Figure 3.9 shows the overall power transfer mechanisms within the power plant outside of the plasma.
The efficiency of the primary coolant pumps in converting electrical to mechanical power is given by
input parameter etahtp in all the calculations described below.

Chapter 3 Physics, Engineering and Other Models 52

3.1.12.1 Divertor

All of the charged particle transport power leaving the plasma (excluding the 1-falpha portion of the
alpha power that escapes directly to the first wall — Section 3.1.2.11) is assumed to be absorbed in
the divertor, along with a proportion fdiv of the radiation power and the neutron power.

Switch iprimdiv may be used to specify whether the thermal power deposited in the divertor becomes
high-grade thermal power (iprimdiv = 1) or low-grade waste heat (see Figure 3.9).

3.1.12.2 First wall

The remaining photon power (i.e. the fraction not incident upon the divertor or lost through holes or
the heating / current drive apparatus) is assumed to be absorbed by the first wall. Power due to ions
derived from the neutral beams but lost before being thermalised (known as ”first orbit loss”), and
from the fast alpha particles lost before being thermalised, also contribute to the total thermal power
absorbed by the first wall.

3.1.12.3 Power conversion cycle

Figure 3.9 summarises the power conversion mechanisms.

Divertor thermal power
[pthermdiv]

First wall thermal power
[pthermfw]

Blanket thermal power
[pthermblkt]

Shield thermal power
[pthermshld]

Primary
(high-grade)

 thermal power
[pthermmw]

[psecdiv]

[psecshld]

Hydrogen production plant
thermal power

[hthermmw]

Gross electric power
[pgrossmw]

turbines

Net electric power
[pnetelmw]

Recirculating
electric power
[precircmw]

Cryogenic plant
[crypmw]

Hydrogen production plant
electrical power

[helecmw]

Vacuum system
[vachtmw]

Tritium processing plant
[trithtmw]

Facilities
[fachtmw]

TF coil resistive power
[tfcmw] Balance of plant power

(offices, labs etc.)
[fgrosbop*pgrossmw]

Heat transport pumps
electrical power

[htpmw]

Other
fusion core systems

electric power
[pcoresystems]

Wall-plug
injection power

[pinjwp]

Secondary
heat

[iprimshld]

[1-iprimshld]
[iprimdiv]

[1-iprimdiv]

[1-etath]

[etath]

Environment

Electricity grid

Figure 3.9: Schematic diagram of the flow of power beyond the fusion power core, showing the origin
of the high-grade and waste heat and the electrical power balance within the plant. Variable names are
given in [. . .]. The input power contributions in green boxes originate in Figure ??.

The high-grade, i.e. useable thermal power (less any thermal power required to produce hydrogen
in a hydrogen production plant — see Section 3.4) is used to produce steam to turn the turbines,
thus generating the plant’s gross electrical power, with an efficiency given by quantity etath. The
remainder is dumped to the environment through the condenser. All of the low-grade heat is dumped
to the environment.

Chapter 3 Physics, Engineering and Other Models 53

primary pumping : This switch controls the calculation of the mechanical pumping power required
for the primary coolant.

If primary pumping = 0, the user sets mechanical pumping power directly.

If primary pumping = 1, the user sets mechanical pumping power as a fraction of thermal power
removed by coolant.

If primary pumping = 1, the mechanical pumping power is calculated, as follows.

User inputs for the coolant outlet temperature (which may be used as an iteration variable), the
coolant channel diameter, and the segmentation of the blanket are used. The peak temperature
in the first wall material (underneath the armour) is derived. The user can apply an upper
limit to this temperature, and if this constraint is used then it is strongly recommended to
set the length of a first wall pipe (fw channel length)as an iteration variable. The Gnielinski
correlation is used to determine the heat transfer in the channel. The stresses in the first wall
are not currently taken into account.

The mechanical pumping power required for the first wall and breeder zone is calculated using
the Darcy friction factor, estimated from the Haaland equation, an approximation to the
ColebrookWhite equation. (If you consider that the calculated value for the pumping power
is too low, then you can add an additional electric power requirement using baseel. Do not use
htpmw min as this prevents the optimisation of the first wall.) The inlet and outlet temperatures
of the first wall and blanket can be different. The isentropic efficiency of the first wall and
blanket coolant pumps (enthalpy increase in the fluid for isentropic compression divided by
the mechanical power used) is specified by the parameter etaiso. Note that the mechanical
pumping powers for the shield and divertor are still calculated using the simplified method (a
fixed fraction of the heat transported).

secondary cycle : This switch controls how the calculation of the plant’s thermal to electric
conversion efficiency (the secondary cycle thermal efficiency) proceeds. See also Section 3.1.12,
which describes the flow of power through the fusion power core.

If secondary cycle = 0, the efficiency of the power generation cycle is set to a single value
obtained from previous cycle modelling studies. The heat deposited in theToroidal field coils
divertor coolant is assumed to be at such low temperature that it cannot be used for power
generation and is dumped to the environment.

If secondary cycle = 1, the efficiency of the power generation cycle is set as above, but the
divertor heat is used for electricity generation.

In the remaining options (secondary cycle = 1, 2 or 3), the heat deposited in the divertor
coolant is used for power generation.

If secondary cycle = 2, the efficiency of the power generation cycle is input by the user.

If secondary cycle = 3, a steam Rankine cycle is assumed. The secondary cycle thermal
efficiency (etath) is calculated from the coolant outlet temperature using simple relations
between temperature and efficiency [32]:

η = −2.0219 + 0.3720 ln(T) (water coolant; saturated steam Rankine cycle) (3.23)

η = −0.8002 + 0.1802 ln(T) (helium coolant; superheated steam Rankine cycle) (3.24)

If secondary cycle = 4, a supercritical CO2 Brayton cycle is assumed. The secondary cycle
thermal efficiency (etath) is calculated from the coolant outlet temperature using simple
relations between temperature and efficiency from [32]:

η = −2.5043 + 0.4347 log(T) (water or helium coolant (3.25)

Chapter 3 Physics, Engineering and Other Models 54

In the above three equations, T is the temperature of the (secondary) coolant at the inlet to the
turbine, assumed to be a fixed margin below the outlet temperature of the primary coolant.

The electrical power required to operate the power plant itself is the so-called recirculating electric
power. Any surplus is exported to the electricity grid as net electric power.

The recirculating power comprises the electrical power required to run all of the associated electrical
systems surrounding the fusion power core, plus the on-site building services, offices, etc., as shown
in Figure 3.9. Of these, the cryogenic plant power includes the power required to cool the TF coils
from the neutron power absorbed by the coils, the PF coils (as defined by the ratio of the total PF
coil stored energy to the fusion power pulse time tpulse), and other ‘cold’ components.

3.1.13 Buildings

The volume and ground area of all the various buildings on a power plant site are included in the
PROCESS calculations for the benefit of the costing algorithms.

3.2 Spherical Tokamak Model

PROCESS has the ability to perform studies on tokamaks in the low aspect ratio regime (major radius
≤ 2× minor radius). The physics and engineering issues [37] associated with these machines are
somewhat different from those of conventional aspect ratio, and this is reflected by the following
special models [2] in PROCESS.

1. The inboard build of a spherical tokamak (ST) is very different from that in a conventional
tokamak. There is no inboard blanket (and possibly no inboard shield), and the inboard TF coil
legs are replaced by a single centrepost. The radial build is altered so that, starting from the
centreline (R = 0), the component order is: TF coil, gap, central solenoid, vacuum vessel, and
then continuing as in Figure 3.1 (a D-shaped cross-section is assumed for the first wall, blanket,
shield and vacuum vessel).

2. Spherical tokamaks have resistive TF coils that combine into a single centrepost at the centre of
the machine. The centrepost is constructed from copper (as are the outboard TF coil sections),
and is tapered lengthways so that it is narrowest at the midplane of the device. Routine CNTRPST
calculates various parameters relevant to the centrepost, including the pump pressure, maximum
temperature and pipe radius, and these may be limited using constraint equations 43 to 46 if
required:

• Equation 43 is a consistency equation for the average centrepost temperature.

• Equation 44 can be used to limit the peak centrepost temperature to a maximum value
(ptempalw) using iteration variable no. 68 (fptemp).

• Equation 45 can be used to force a lower limit to the edge safety factor qlim (see below),
using iteration variable no. 71 (fq).

• Equation 46 can be used to apply an upper limit to the ratio of plasma current to TF coil
(“rod”) current, using iteration variable no. 72 (fipir).

3. A gaseous divertor model is used, and a simple divertor heat load calculation is employed, rather
than the more complex divertor model assumed for conventional aspect ratio tokamaks.

4. A simple PF coil current scaling algorithm is available for use with the ST option.

Chapter 3 Physics, Engineering and Other Models 55

5. The plasma shaping terms (elongation and triangularity) can be calculated directly given the
aspect ratio, using ishape = 1 (see Section 3.1.2.1). This setting also scales the lower limit [2]
for the edge safety factor, for use with constraint equation no. 45:

qlim = 3 (1 + 2.6 ∗ ǫ2.8) (3.26)

where ǫ = a/R.

6. Among the physics models that differ from those relevant to conventional aspect ratio machines
are (i) the plasma poloidal field Bpol, (ii) the bootstrap current fraction, (iii) the beta limit, and
(iv) the neutron heating of the centrepost [2].

3.2.1 Spherical tokamak switches

Switch itart provides overall control of the ST switches within the code, and subroutine CHECK ensures
that no conflicting values are inadvertently set by the user in the input file. Table 3.3 summarises the
switch values relevant to each aspect ratio regime.

conventional aspect ratio low aspect ratio
switch itart = 0 itart = 1

ishape (Section 3.1.2.1) 0, 2 0, 1
ibss (Section 3.1.2.12) 1, 2, 3 2, 3
icurr (Section 3.1.2.8) 1, 3, 4, 5, 6, 7 2
itfsup (Section 3.1.6) 0, 1 0

Table 3.3: Summary of the switch values in PROCESS that relate to conventional aspect ratio and low
aspect ratio machines.

3.3 Pulsed Plant Operation

If the plasma current is partially or entirely driven by electromagnetic induction, it is necessary to
operate the plant in a pulsed manner as the current swing in the central solenoid coils cannot be
continued indefinitely. PROCESS can perform a number of calculations relevant to a pulsed power
plant, as detailed below.

Switch lpulse determines whether the power plant is assumed to be based on steady-state (lpulse
= 0) or pulsed (lpulse = 1) operation.

3.3.1 Thermal cycling package

Update... This performs calculations on the first wall of the machine. Evaluation of the mechanical
and thermal stresses on this component lead to a measure of the maximum number of cycles to which
the first wall can be subjected, and hence to the minimum allowable length of each reactor cycle for
a specified first wall lifetime. The cycle time can be constrained to be at least the minimum value by
turning on constraint equation no. 42 with iteration variable no. 67 (ftcycl).

The thickness of the first wall is constrained to lie within lower and upper bounds, which ensures that
it can withstand the internal coolant pressure and the peak temperature and neutron fluence.

Chapter 3 Physics, Engineering and Other Models 56

Switch itcycl activates the desired model for the first wall axial stress calculations. If itcycl = 1

(the default), the wall is fully constrained axially, and no bending can occur. If itcycl = 2, there is
no constraint on the axial motion, but no bending can occur. Finally, if itcycl = 3, again there is
no axial constraint, and bending is allowed to occur.

3.3.2 First wall coolant temperature rise limit

The rise in temperature of the first wall coolant can be limited to be no more than the value of dtmpmx
by turning on constraint equation no. 38 with iteration variable no. 62 (fdtmp).

3.3.3 First wall peak temperature limit

The maximum first wall temperature can be limited to be no more than the value of variable tpkmax

by turning on constraint equation no. 39 with iteration variable no. 63 (ftpeak).

3.3.4 Start-up power requirements

The minimum auxiliary power required during the start-up (ignition) phase is calculated on the basis
of a POPCON analysis. Ignition is accessed via the so-called Cordey Pass (the path in plasma
density–temperature space which minimises the power requirement) and the code ensures that there
is sufficient auxiliary power to accommodate this. In fact, this calculation is very CPU-intensive, so
the relevant routine is not called at present. In practice, the auxiliary power tends to exceed the
minimum allowable value anyway, without any need to constrain it to do so.

The auxiliary power reaching the plasma can be forced to be more than the minimum allowable value
auxmin by turning on constraint equation no. 40 with iteration variable no. 64 (fauxmn). The value
of auxmin is determined by the code if the start-up model is activated, otherwise it may be initialised
via the input file.

3.3.5 Plasma current ramp-up time

This calculation ensures that the plasma current ramp rate during start-up is prevented from being too
high, as governed by the requirement to maintain plasma stability in li - qψ space (see Section 3.1.8.2).

3.3.6 Burn time

The length of the burn time is calculated from the surplus volt-seconds available from the OH/PF coil
system during the plasma burn phase, after the flux required during the plasma start-up is taken into
account. A minimum burn time can be enforced via constraint equation no. 13 and iteration variable
no. 21 (ftburn).

3.3.7 Thermal storage

During every cycle there is a period when no fusion power is produced. The net electric output from
the plant must, however, be maintained, and this is achieved using thermal storage. There are three
types of thermal storage available within PROCESS, and the value of switch istore determines which
is to be used. If istore = 1 (the default), option 1 of Ref. [38] is assumed, which utilises the thermal
storage inherent in the machine’s steam cycle equipment. This should be used if the machine down

Chapter 3 Physics, Engineering and Other Models 57

time is less than 100 seconds. If istore = 2, option 2 of Ref. [38] is assumed, which uses the same
method as before, but augments it with an additional boiler. This may be used for machine down
times of up to 300 seconds. Finally, if istore = 3, a large stainless steel block acts as the thermal
storage medium.

3.4 Hydrogen Production Facility

Fusion power plants have been mooted as a means of producing hydrogen for use in fuel cells for cars,
for instance. PROCESS includes options to enable the plant to produce hydrogen using a number of
different processes.

To include the production of hydrogen by the power plant, it is necessary to set the switch ihplant,
as follows:

ihplant = 0 : No hydrogen production (default)

ihplant = 1 : Hydrogen production by low temperature electrolysis

ihplant = 2 : Hydrogen production by endothermic high temperature electrolysis

ihplant = 3 : Hydrogen production by exothermic high temperature electrolysis

ihplant = 4 : Hydrogen production by thermo-chemical processes

Table 3.4 describes the additional options available for each of the types of hydrogen production given
above. The different processes use either electrical power or thermal power directly, so the required
inputs differ. Variable helecmw (iteration variable no. 87) is the electrical power in MW required for
hydrogen production, while hthermmw (iteration variable no. 88) is the thermal power required. Note
that hthermmw must not be used as an iteration variable if ihplant 6= 4, as it will be calculated from
the required electrical power instead. Similarly, helecmw must not be used as an iteration variable if
ihplant = 4.

hydrogen plant option helecmw hthermmw efficiency variable

ihplant=1 input zero etahlte

ihplant=2 input calculated etahten

ihplant=3 input calculated etahtex

ihplant=4 zero input etahth

Table 3.4: Summary of the variables in PROCESS that relate to the different hydrogen plant processes.

The efficiency variables given in Table 3.4 are all input parameters, and are the factors to be used to
convert the value of helecmw to the amount of hydrogen produced (in MW equivalent); these can be
greater than unity in all cases except ihplant = 4.

3.5 Stellarator Model

The code has the ability to perform calculations based on the physics and engineering of a stellarator,
which, although being a toroidal device, is radically different in a number of ways from a tokamak.

The model is largely based on W7-X and the HELIAS 5-B stellarator power plant design [39]
(Figure 3.10) and related modelling that has been performed by IPP Greifswald [40, 41, 42].

Chapter 3 Physics, Engineering and Other Models 58

To activate the stellarator coding, it is necessary to create a file device.dat, containing the single
character 1 in the first row, in the working directory (see Section 4.4). This has the effect of setting
the internally-used switch istell = 1. If the file is absent, or its first character is set to something
other than 1, the stellarator model is not used, and istell is set to 0.

The stellarator model is largely contained within source file stellarator.f90. The following
consistency equations (see Section 2.5) should be used without modification:

1 : plasma beta consistency

2 : global power balance

11 : radial build consistency

Figure 3.10: Fusion power core of the HELIAS 5-B conceptual power plant design (from [39])

3.5.1 Stellarator physics

Much of the physics is identical to that for tokamaks, including the plasma composition and the
fusion power calculations. However, some physics topics do differ between stellarators and tokamaks,
as follows.

Chapter 3 Physics, Engineering and Other Models 59

3.5.1.1 Plasma geometry

The plasma geometry model uses Fourier coefficients to represent the complex 3-D plasma shape
typical of stellarators. A VMEC [43] calculation (or other equilibrium code that can provide the
Fourier coefficients of the LCFS) must have been performed prior to running with PROCESS. The
overall size of the plasma is scaled correctly for the required (mean) major and minor radii for the
machine being modelled [44].

It is necessary to provide three input files that define the plasma shape:

1. Set vmec info file in the input file to the name of a file with the following format (the numbers
given are those for the W7-X high mirror configuration); in practice only the effective major and
minor radius values (R eff and a eff, respectively) and the number of field periods are used:

R_eff [m] a_eff [m] Aspect ratio Plasma vol [m3] LCFS surf area [m2] field periods

5.486576 0.4942638 11.10050 26.45749 133.4281 5.0

2. Set vmec rmn file in the input file to the name of a VMEC output file containing the calculated
plasma boundary R(m, n) Fourier coefficients, where m = 0 to 11 (rows) and n = −12 to 12
(columns).

3. Set vmec zmn file in the input file to the name of a VMEC output file containing the calculated
plasma boundary Z(m, n) Fourier coefficients, where m = 0 to 11 (rows) and n = −12 to 12
(columns).

This method enables a wide range of potential plasma geometries to be modelled, if required. The
plasma volume, surface area and mean cross-sectional area are the outputs from the plasma geometry
model.

3.5.1.2 Absense of plasma current

Stellarators try to achieve zero plasma current in order to allow safe divertor operation, so no current
scalings are required.

3.5.1.3 Beta limit

The beta limit is assumed to be 5%, based on 3-D MHD calculations [45]. To apply the beta limit,
constraint equation no. 24 should be turned on with iteration variable no. 36 (fbetatry).

3.5.1.4 Density limit

The density limit relevant to stellarators has been proposed to be [46]

nmax = 0.25
(

PB0/R0 a2
p

)
1

2 (3.27)

where n is the line-averaged electron density in units of 1020 m−3, P is the absorbed heating power
(MW), B0 is the on-axis field (T), R0 is the major radius (m), and ap is the plasma minor radius (m).
To enforce the density limit, turn on constraint equation no. 5 with iteration variable no. 9 (fdene).

Chapter 3 Physics, Engineering and Other Models 60

3.5.1.5 τE scaling laws

Five confinement time scaling laws relevant to stellarators are present within PROCESS. The value of
switch isc determines which of these is used in the plasma energy balance calculation.

τE (Large Helical Device [46]: isc=21) = 0.17 R0.75
0 a2

p n̄0.69
20 B0.84

0 P−0.58 (3.28)

τE (Gyro-reduced Bohm [47]: isc=22) = 0.25 B0.8
0 n̄0.6

20 P−0.6 a2.4
p R0.6

0 (3.29)

τE (Lackner-Gottardi [48]: isc=23) = 0.17 R0 a2
p n̄0.6

20 B0.8
0 P−0.6 ι0.4 (3.30)

τE (ISS95 [49]: isc=37) = 0.079 R0.65
0 a2.21

p n̄0.51
19 B0.83

0 P−0.59 ῑ0.4 (3.31)

τE (ISS04 [50]: isc=38) = 0.134 R0.64
0 a2.28

p n̄0.54
19 B0.84

0 P−0.61 ῑ0.41 (3.32)

Here, ῑ is the rotational transform, which is equivalent to the reciprocal of the tokamak safety factor
q.

3.5.1.6 Heating power options

Stellarators require no current drive, although provision for auxiliary heating does need to be present.
The method by which auxiliary heating power is supplied is determined by the switch isthtr:

isthtr = 1 : electron cyclotron resonance heating

isthtr = 2 : lower hybrid heating

isthtr = 3 : neutral beam injection

The value of variable pheat determines the actual amount of auxiliary heating power (in Watts) to
be applied to the plasma. This variable may be used as an iteration variable (no. 11). Switch ignite

may be used if necessary — see Section 3.1.9.5.

3.5.1.7 Divertor

Although the divertor has the same function in both stellarators and tokamaks, the envisaged concepts
differ quite substantially. This is not only related to the different geometry and symmetries but also
specifically to the magnetic configuration. While the inherent axisymmetry of a tokamak allows
for poloidally-continuous single or double divertor configurations, the periodicity of helical advanced
stellarators leads to multiple X-points with a corresponding chain of magnetic islands. This island
structure may be exploited by carefully placing divertor plates along the stochastic field lines, naturally
leading to a discontinuous divertor, with the individual plates being placed in a complex 3-D geometry;
see Figure 3.11.

Rather than trying to describe the complex physics with a two-point scrape-off layer model as is used
for tokamaks, the stellarator divertor model [41] is based on fundamental principles which relate the
power crossing the separatrix with an effective wetted area on the divertor plates allowing the code to
estimate the heat load delivered to the divertor. A basic island divertor model is used which assumes
diffusive cross-field transport and high radiation at the X-point,

The radiated power fraction in the scrape-off layer is given by the input parameter f rad. This is
in contrast to the method used for tokamaks, in which the radiated power fraction is a calculated
quantity.

A number of other input parameters may be used to modify the divertor model; see the variable
descriptor file for more details.

Chapter 3 Physics, Engineering and Other Models 61

Figure 3.11: A five-period HELIAS plasma (specifically W7-X) with island divertor plates shown in
red

3.5.2 Machine configuration

There are a large number of possible stellarator configurations. As stated earlier, the one chosen
for the PROCESS model is based on the HELIcal Advanced Stellarator (HELIAS) concept, in which
all the coils resemble distorted, non-planar TF coils — no helical coils or tokamak-like PF coils are
present. The coil geometry is scaled from the HELIAS 5-B power plant design, which is based on a
five field-period HELIAS configuration.

3.5.2.1 Machine build

Since a stellarator is inherently non-axisymmetric, the build of the PROCESS stellarator is defined in
terms of the mean thicknesses of components.

The surface areas for the first wall, blanket and shield components are scaled linearly with their
effective minor radius from the plasma surface area calculation (the area of a simple torus of circular
cross-section is 4π2Ra, hence the linear scaling with a). The input parameter fhole may be used to
specify the hole fraction, to adjust the surface area to take account of ports and divertors, for instance.
The volumes of the first wall etc. are simply given by the product of their surface area and their mean
thickness.

In contrast to tokamaks, which in PROCESS are assumed to have a cylindrical external cryostat
completely surrounding the fusion power core, the stellarator model assumes that the external cryostat
(labelled as the outer vessel in Figure 3.10) is toroidal with a circular cross-section. Its cross-section
is assumed to be centred at the mean plasma major radius.

Chapter 3 Physics, Engineering and Other Models 62

All items external to the fusion power core (buildings, turbines, power conversion systems, etc.) remain
unchanged.

3.5.2.2 Stellarator coils

The stellarator coil model [42, 51] combines scaling aspects based on the HELIAS 5-B design in
combination with analytic inductance and field calculations.

The fully three-dimensional shape of the coils is assumed to be fixed, but the sizes of the coils are
scaled from the HELIAS 5-B values to the geometrical values for the machine being modelled using
fundamental physics and engineering principles.

The stellarator coils are assumed to be superconducting — no resistive coil calculations are performed.
The critical field at the superconductor is calculated using circular approximations for the coils in the
inductance and field calculations, and the limit is enforced automatically. Available superconductors
are Nb3Sn (isumattf = 1) and NbTi (isumattf = 3).

The winding pack cross-section is rectangular for the stellarator coils, rather than the complicated
two-step cross-section assumed for tokamaks. The coil thicknesses and most of the dimensions of the
materials within the coil cross-section are outputs from the model, instead of being inputs as is the
case for tokamaks; see the variable descriptor file for details. In addition, certain iteration variables
(tfcth, no. 13; thkcas, no. 57; cpttf, no. 60 and tftort, no. 77) should not be turned on in the
input file as they are calculated self-consistently; the code will stop with an error message if this is
attempted.

3.6 Reversed Field Pinch Model

In addition to the tokamak and stellarator magnetic confinement devices, the code has the ability
to perform calculations based on the physics and engineering of a reversed field pinch (RFP) device.
This third type of toroidal magnetic device is superficially similar in design to a tokamak (so therefore
shares many of the same components), but the magnetic field configuration differs.

The model used in PROCESS is largely based on the TITAN fusion power plant [52, 53]. The following
sections summarise its main features, where they differ from those for tokamaks.

To activate the RFP coding, it is necessary to create a file device.dat, containing the single character
2 in the first row, in the working directory (see Section 4.4). This has the effect of setting the internally-
used switch irfp = 1. If the file is absent, or its first character is set to something other than 2, the
RFP model is not used, and irfp is set to 0.

3.6.1 RFP physics

The plasma in RFPs is circular in cross-section and is axisymmetric.

3.6.1.1 Beta limit

The poloidal beta is limited to a maximum value given by input parameter betpmx (default = 0.19)
using constraint equation 48 and iteration variable 79 (fbetap).

Chapter 3 Physics, Engineering and Other Models 63

3.6.1.2 Density limit

No density limit is explicitly coded for RFPs, other than by simply constraining the upper bound of
the electron density variable dene (iteration variable 6).

3.6.1.3 τE scaling law

One confinement time scaling law relevant to RFPs is present within PROCESS. The value of switch
isc determines the scaling to be used in the plasma energy balance calculation.

τE (TITAN RFP [52]: isc=25) = 0.05 a2 Ip(MA)

3.6.1.4 F -Θ plot

Much of the RFP physics is derived from the characteristic F -Θ plot, where F = Bφ(a)/〈Bφ〉,
Θ = Bθ(a)/〈Bφ〉, and 〈Bφ〉 is the average value of the toroidal field over the plasma cross-section.
Given a value of the pinch parameter Θ, the corresponding value of the reversal parameter F may be
read from the F -Θ plot, and from these the plasma current and the current in the TF coils may be
obtained using

Bθ(a) =
µ0Ip

2πa

Bφ(a) =
µ0ITFC

2πR

(the second of these assumes that Bφ(a) is approximately equal to the vacuum toroidal field at the
plasma centre).

The pinch parameter Θ is set using iteration variable no. 78: rfpth. The corresponding value of the
reversal parameter F (rfpf) is calculated using routine FTHETA. F is constrained to be negative using
constraint equation no. 49 with f-value frfpf (iteration variable no. 80).

3.6.1.5 Current drive

The RFP oscillating field current drive option is turned on by setting iefrf = 9, with a fixed efficiency
of 0.8 Amps per Watt of power injected into the plasma (the coding for this model is, therefore, trivial).
The wall plug to injector efficiency is set using input parameter etaof, which has a default value of
0.5, and the unit cost is set using input parameter ucof. The default value for ucof is 3.3 $ per Watt
of injected power.

The bootstrap fraction is assumed to be zero.

Plasma ignition, and additional plasma heating using auxiliary power, are treated as for tokamaks.

3.6.2 TF coils

The TF coils for the RFP option are derived from the TITAN-II coil set, which uses circular copper
coils. The radial thickness is set using tfcth as usual, but the toroidal thickness may also be set,
using iteration variable no. 77 (tftort). This is constrained to be no larger than is geometrically
possible using constraint equation no. 47 with iteration variable no. 76 (frfptf).

Chapter 3 Physics, Engineering and Other Models 64

3.6.3 Ohmic heating coils

The TITAN-I ohmic heating coil locations, currents etc. are assumed. These comprise 14 copper coils,
with currents swinging from positive to negative during the plasma start-up period, and then decaying
back to zero. To account for different plasma geometries and currents, the ohmic heating coil locations
relative to the plasma centre scale with the TF coil radius and with the plasma major radius, and the
current per turn scales linearly with the plasma current.

3.6.4 EF coils

The Equilibrium Field coils are based on the TITAN-I EF coils, which are two superconducting
(NbTi) coils that provide the correct vertical field at the plasma centre. The coil locations scale with
the plasma major radius and TF coil radius along with the ohmic heating coils.

3.6.5 Divertor

The TITAN divertor concept uses three poloidal divertors, which bear little resemblance to the typical
tokamak toroidal divertor systems. The code uses the TITAN divertor lifetime of one year to enable
the divertor costs to be reasonable, although the divertor surface area (and therefore the cost per
divertor) is likely to be inaccurate.

3.6.6 Code modifications

As with the stellarator model, the RFP model has been incorporated in such a way as to allow its
simple removal again if required in the future. All new routines are confined to the dedicated source file
rfp.f90. The tokamak-relevant consistency equations in PROCESS (see Section 2.5) are used without
modification, to ensure that the coil currents and the fields they produce are consistent with the
plasma parameters.

3.7 Inertial Fusion Energy Model

As well as magnetic confinement devices, PROCESS has the ability to model inertial fusion plants, in
which a laser or ion beam is used to ignite a target pellet containing the fusion fuel.

To activate the inertial fusion energy (IFE) coding, it is necessary to create a file device.dat,
containing the single character 3 in the first row, in the working directory (see Section 4.4). This
has the effect of setting the internally-used switch ife = 1. If the file is absent, or its first character
is set to something other than 3, the IFE model is not used, and ife is set to 0.

The IFE model [54] is controlled using two additional switches.

ifetyp = 0 : Generic device build

ifetyp = 1 : OSIRIS-type device build [55, 56, 57]

ifetyp = 2 : SOMBRERO-type device build [58, 59]

ifetyp = 3 : HYLIFE-II-type device build [60, 61, 62]

Chapter 3 Physics, Engineering and Other Models 65

Switch ifetyp defines the type of device that is assumed; this varies widely between different
conceptual designs. The generic type assumes a cylindrically symmetric device, while the other types
are approximations to the builds of the given conceptual machines [63]. In general, the build from
the centre of the device (at the target ignition location) is in the order: chamber, first wall, gap,
blanket, gap, shield, gap, building wall. The user specifies the thicknesses of these regions, and also
the materials that are present and in what proportions.

ifedrv = -1 : Driver efficiency and target gain are input as functions of driver energy

ifedrv = 0 : Driver efficiency and target gain are input

ifedrv = 1 : SOMBRERO laser drive efficiency and target gain assumed

ifedrv = 2 : OSIRIS heavy ion beam driver efficiency and target gain are assumed [64]

Switch ifedrv defines how the code calculates the driver efficiency and target gain — these are the
primary outputs required from the physics part of the model. For the SOMBRERO and OSIRIS
cases (ifedrv = 1 and ifedrv = 2, respectively) the driver efficiency and gain are calculated from
curves of these parameters as functions of the driver energy. For the ifedrv = -1 case, the user
provides the driver efficiency and target gain versus driver energy, via the two arrays etave(1:10)

and gainve(1:10) respectively; the element number corresponds to the driver energy in MJ, and
outside the range 1–10 MJ the curves are extrapolated linearly. Finally, for the ifedrv = 0 case, the
user inputs single values for the driver efficiency (drveff) and target gain (tgain).

Constraint equation no. 50 can be turned on to enable the ignition repetition rate to remain below
a user-specified upper limit (rrmax); iteration variable no. 86 (frrmax) is the associated f-value (see
Section 2.5). The other iteration variables relevant for the IFE model are nos. 81–85 (edrive, drveff,
tgain, chrad and pdrive — see Table 2.2).

3.8 Safety and Environment Models

At present, the neutronics, activation and inventory calculations comprise the safety and environment
models in the code.

The models comprising the safety and environmental calculations [65] within the code are all called
from routine FISPAC. They are only performed once, at the end of each run, as they take a relatively
long time to evaluate, and the results are only used for diagnostic purposes — no constraints are
imposed at present to minimise doses, for instance.

N.B. These models are currently not available in the present version of the code.

3.8.1 Neutronics

The neutronics module predicts the neutron flux spectra in the inboard and outboard first wall and
blanket components. The spectra are based on a simplified tokamak device that has a fixed ratio
(= 1.5825) between the outboard blanket thickness and the inboard blanket thickness, and are scaled
according to the actual thickness of the outboard blanket. This relatively limited, single-parameter
approach is expected to be replaced by a more general method, which should allow a more accurate
portrayal of the device being modelled by PROCESS.

Chapter 3 Physics, Engineering and Other Models 66

3.8.2 Activation and inventory information

The code evaluates the consequences of exposing the power plant’s materials to the calculated neutron
fluxes, subject to the limitations imposed by the neutronics module. A library of neutron cross-sections
and decay data is used to calculate the total activity, gamma-ray dose rate and decay heat output
due to the materials’ exposure to neutrons, both at the end of the plant’s life and at a time 100 years
later. These values are relevant to decommissioning and disposal studies, and additional parameters
that can be obtained from the nuclide inventory will also be included as the need arises.

3.9 Cost Models

Two cost models are available, determined by the switch cost model.

3.9.1 1990 cost model (cost model = 0)

This combines methods [66] used in the TETRA code [1] and the Generomak [67] scheme. The costs
are split into accounting categories [68]. The best references for the algorithms used are [2], and
source file costs.f90 in the code itself. The majority of the costed items have a unit cost associated
with them. These values scale with (for example) power output, volume, component mass etc., and
many are available to be changed via the input file. All costs and their algorithms correspond to 1990
dollars.

The unit costs of the components of the fusion power core are relevant to “first-of-a-kind” items. That
is to say, the items are assumed to be relatively expensive to build as they are effectively prototypes
and specialised tools and machines have perhaps been made specially to create them. However, if a
“production line” has been set up, and R & D progress has allowed more experience to be gained in
constructing the power core components, the costs will be reduced as a result. Variable fkind may
be used to multiply the raw unit costs of the fusion power core items (by a factor less than one) to
simulate this cost reduction for an N th-of-a-kind device. In other systems studies of fusion power
plants [69], values for this multiplier have ranged from 0.5 to 0.8.

Many of the unit costs have four possible choices, relating to the level of safety assurance [70] flag lsa.
A value lsa = 1 corresponds to a plant with a full safety credit (i.e. is truly passively safe). Levels 2
and 3 lie between the two extremes, and level 4 corresponds to a present day fission reactor, with no
safety credit.

The first wall, blanket, divertor, centrepost (if present) and current drive system have relatively short
lifetimes because of their hostile environment, after which they must be replaced. Because of this
frequent renewal they can be regarded as though they are “fuel” items, and can be costed accordingly.
Switch ifueltyp is used to control whether this option is used in the code. If ifueltyp = 1, the
costs of the first wall, blanket, divertor and a fraction fcdfuel of the cost of the current drive system
are treated as fuel costs. If ifueltyp = 0, these are treated as capital costs.

If the switch ireactor = 0, no cost of electricity calculation is performed. If ireactor = 1, then
the cost of electricity is evaluated, with the value quoted in units of $/MWh.

The net electric power is calculated in routine POWER. It is possible that the net electric power can
become negative due to a high recirculating power. Switch ipnet determines whether the net electric
power is scaled to always remain positive (ipnet = 0), or whether it is allowed to become negative
(ipnet = 1), in which case no cost of electricity calculation is performed.

Chapter 3 Physics, Engineering and Other Models 67

3.9.2 2015 Kovari model (cost model = 1)

This model [21] provides only capital cost, and is not currently suitable for estimating the cost of
electricity. N th-of-a-kind factors, level of safety assurance factors, and blanket replacement costs are
not included. The mean electric output is calculated using the capacity factor, which takes accountof
the availability and the dwell time for a pulsed reactor. The capital cost divided by the mean electric
output is a useful comparison parameter.

3.10 Plant availability

Switch iavail is used to control how the overall plant availability factor cfactr is calculated, as
follows

If iavail = 0, the input value of cfactr is used.

If iavail = 1, a model by N. Taylor and D. Ward [71] is used instead, in which cfactr is calculated
taking into account the time taken to replace certain components of the fusion power core, and various
unplanned unavailability fractions which may be set by the user, as summarised in Table 3.5.

input parameter description

tbktrepl time needed to replace blanket (years)
tdivrepl time needed to replace divertor (years)
tcomrepl time needed to replace both blanket and divertor (years)
uubop unplanned unavailability of balance of plant
uucd unplanned unavailability of current drive system
uudiv unplanned unavailability of divertor
uufuel unplanned unavailability of fuelling system
uufw unplanned unavailability of first wall
uumag unplanned unavailability of magnets
uuves unplanned unavailability of vessel

Table 3.5: Summary of the variables in PROCESS that relate to the Taylor-Ward availability model
(iavail=1).

If iavail = 2, the new Morris model is implemented [20]. It estimates both planned and unplanned
unavailability, and the time during which no power is being generated if the reactor is pulsed.

The planned unavailability is linked to the lifetimes of the blanket and divertor and the time taken to
replace them. The lifetime of the blanket is based on the allowable fast neutron fluence. In contrast,
the lifetime of the divertor is estimated using the particle and photon load. The time to replace the
blanket and divertor have been estimated by Crofts et al, who studied the influence of the number of
remote handling systems working in parallel. PROCESS uses a simple fit to their results, and adds a
month to allow the dose rate to reduce to an acceptable level before remote handling operations start,
and a month to allow for pump-down and preparation for operation at the end of the shutdown.

To estimate the unplanned downtime, each susbsystem is represented by a simple model that tries
to capture the degradation of reliability when approaching operational and technological limits. This
increases the risk of unplanned downtime as design margins are reduced.

For the toroidal field coils, the chance of a quench is likely to be the largest driver of the risk of
unplanned unavailability, and this may depend on the temperature margin - the difference between the

Chapter 3 Physics, Engineering and Other Models 68

actual temperature and the critical temperature of the superconductor. The user inputs a minimum
temperature margin, below which quench is immediate, and a second, higher value, above which
quenches never occur. In between, there is a finite quench rate.

The unplanned downtime for the blanket is based on the number of cycles it experiences before planned
replacment. (This model is restricted to pulsed reactors.) The cycle life of the blanket is expressed
using a reference lifetime. Before this liefetime, there is a constant but small probability of failure in
ecah pulse. After the reference lifetime the reliability of the blanket starts to decline, reaching zero at
the upper lifetime limit.

It is assumed that the vacuum system can be maintained in parallel with blanket replacement, so it
does not contribute to the planned downtime. The unplanned downtime is based on an assumed failure
rate for a cryopump, and a specified total number of pumps, with some of them being redundant. The
resulting downtime can be reduced to a negligible level if there are several redundant pumps, but in
addition, there is a fixed unavailability to allow for common mode failures affecting several pumps.

Chapter 4

Running PROCESS

The intention of this chapter is to provide a comprehensive prescription for setting up and performing
runs with the code. Firstly, the input file’s structure and format is described. The user is then taken
through the procedure for setting up the code to model a new machine, and finally an attempt is made
to indicate and solve the problems that the user will face whilst trying to achieve a feasible solution.

4.1 Environment set-up

PROCESS is available for execution from the CCFE Fusion Unix Network, on which you must have an
account.

To set up your environment to be able to run the code, the user interface and the associated utilities
(see Chapter 6), add the following lines to your .bashrc file. This is a file in the user’s home directory,
assuming the bash Unix shell is being used. Although hidden, it can be opened by issuing the relevant
command, for example gedit .bashrc.

module use /home/PROCESS/modules

module swap python

module load process/master

(If you want to use the latest draft version of the code instead of the latest verified release version,
replace module load process/master with module load process/develop above.)

4.2 User Interface

The user interface allows for viewing and editing of IN.DAT files in a web browser. Launch the interface
(GUI) by typing start_gui from the Unix command line.

(The interface uses Django for its web framework. Currently it can only be launched by running the
Django development server locally. This is performed automatically if you launch the GUI as above.
For instructions on starting the server manually, see the README file in the utilities/processgui

directory.)

Please note: If you are working on a Linux desktop machine and already have Firefox open, typing
start_gui on a Fusion Unix Network machine will try to open a PROCESS GUI session on the already-
open Firefox running locally. This will fail! You need to either close the local Firefox session completely

69

Chapter 4 Running PROCESS 70

before typing start_gui or open a different browser manually (e.g. konqueror) after typing start_gui

and navigate to 127.0.0.1:8000 in the address bar.

Every variable is listed along with its current value, a ’reference’ value and a short description.
Hovering over the short description will provide a longer description. Until an input file is opened, all
values are given their default values assigned by PROCESS.

The reference values are used to compare differences between two files. Differences between the
reference value and the current input value will be highlighted in red.

The ’Meta’ section allows editing of the run description, which will be placed at the top of the created
IN.DAT. Iteration variables and constraint equations can be enabled using the checkboxes in the
relevant sections.

An input file and a reference file can be opened using the buttons at the top of the window. The files
opened must be compatible with the PROCESS version number shown in the top right of the window.

The ’Save’ button creates an IN.DAT file with a similar layout to the GUI. Variables whose values
are set different from the PROCESS default are listed under module headings, along with a comment
describing the variable. For integer variables, a description of the value selected may also be included.
The variables neqns (number of constraints) and nvar (number of iteration variables) are automatically
calculated.

When using the Firefox web browser it can save time to select

Chapter 4 Running PROCESS 71

Preferences > General > Downloads > Always ask me where to save files.

You can searching for a particular variable can be done using the browser’s in-built search. Use the
”Expand” button in the top-right of the window to expand every module heading and use Ctrl-f to
search.

4.3 Executing the Code

Execute PROCESS by simply typing process on the Unix command line.

By default, the input and output file names are as described in the following sections. If, however,
PROCESS is executed with an argument, this is used as a prefix to the file names:

process myrun

will assume that the input file is called myrunIN.DAT, etc.

The input file must be in the current directory. The output files myrunOUT.DAT and myrunMFILE.DAT
will be created in the current directory.

4.4 The Input File

The input file IN.DAT is used to change the values of the physics, engineering and other code parameters
from their default values, and to set up the numerics (constraint equations, iteration variables etc.)
required to define the problem to be solved. The user interface writes the input file, so it is not
necessary to edit it directly. Details of layout and format are in Appendix B.

If the code encounters a problem reading the input file, it will stop immediately with an error message.
The last line of the output file OUT.DAT may give an indication of where in the input file the problem
lies.

4.5 The Output Files

The main output from the code is sent to file OUT.DAT in the working directory. It is essential to check
that the code reports that it has found a feasible solution.

A second file, MFILE.DAT, is also produced in the working directory. This file contains most of the
same data as OUT.DAT but in a different format, and has been designed to be “machine-readable” by
some of the utility programs described in Chapter 6, to allow simple post-processing and graphical
output to be produced easily.

4.6 Optimisation mode

Switch ioptimz should be set to 1 for optimisation mode.

If ioptimz = 0, a non-optimisation pass is performed first. Occasionally this provides a feasible set
of initial conditions that aids convergence of the optimiser, but it is recommended to use ioptimz =

1.

Chapter 4 Running PROCESS 72

Enable all the relevant consistency equations, and it is advisable to enable the corresponding iteration
variables shown in bold in Table 2.3. A number of limit equations (inequality constraints) can also be
activated. For limit equations, the corresponding f-value must be selected as an iteration variable. In
optimisation mode, the number of iteration variables is unlimited.

It may still be difficult, if not impossible, to reconcile the fusion power and the net electric power
with the required values. This may well be due to the power conversion efficiency values being used
— refer to Figure 3.9.

With luck, a few iterations of this process will produce an adequate benchmark case. A typical input
file for use with PROCESS in non-optimisation mode is contained in Appendix D.

If scans of a given variable are to be made over a large range of values, it is often a good idea to
start the scan in the middle of the desired range, and to split the scan in two — one going downwards
from the initial value, and the other upwards. This ensures that the whole range of the scan produces
well-converged machines (assuming a “good” initial point), without sharp changes in gradient in the
parameter values.

It should be remembered that the value of the scan variable is set in the array sweep, and this overrules
any value set for the variable elsewhere in the input file.

The output from an optimisation run contains an indication as to which iteration variables lie at
their limiting values. A typical input file for use with PROCESS in optimisation mode is contained in
Appendix C.

4.7 Non-optimisation mode

Non-optimisation mode is sometimes used to perform benchmark comparisons, whereby the machine
size, output power etc. are known and one only wishes to find the calculated stresses, beta values and
fusion powers, for example.

Running PROCESS in non-optimisation mode requires few changes to be made to the input file from the
non-optimisation case. The main differences between optimisation mode and non-optimisation mode
are:

1. Non-optimisation mode does NOT apply lower or upper bounds to the iteration variables. It
follows that limit equations are not enforced.

2. In non-optimisation mode the number of active iteration variables must be equal to the number
of constraints.

3. A figure of merit is not available in non-optimisation mode.

4. Scans cannot be performed in non-optimisation mode.

As before, the user must decide which constraint equations and iteration variables to activate.

4.8 Troubleshooting

Experience has shown that the first few attempts at running PROCESS with a new input file tends to
produce unfeasible results — that is, the code will not find a consistent set of machine parameters.
The highly non-linear nature of the numerics of PROCESS is the reason for this difficulty, and it often

Chapter 4 Running PROCESS 73

requires a great deal of painstaking adjustment of the input file to overcome. The utility a to b

(subsection 6.1.12) is useful in this situation.

4.8.1 Error handling

In general, errors detected during a run are handled in a consistent manner, with the code producing
(hopefully) useful diagnostic messages to help the user understand what has happened.

There are three levels of errors and warning that may occur:

Level 1: An informational message is produced under certain conditions, for example if the code has
modified the user’s input choice for some reason.

Level 2: A warning message is produced if a non-fatal situation has occurred that may result in an
output case that is inaccurate or unreliable in some way.

Level 3: An error message will occur if a severe or fatal error has occurred and the program cannot
continue.

These messages are printed on the screen during the course of a run, and those still active at the
final (feasible or unfeasible) solution point are also written to the end of the output file (messages
encountered during the iteration process are not copied to the output file, as the convergence to a
valid solution might resolve some of the warnings produced earlier in the solution process).

The error status variable returns the highest severity level that has been encountered (or zero if no
abnormal conditions have been found); if a severe error (level 3) is flagged at any point the program is
terminated immediately. The final message number encountered during a run is returned via output
variable error id. In addition, with certain messages, a number of diagnostic values may also be
given; these can be used to provide extra diagnostic information if the source code is available.

4.8.2 General problems

A code of the size and complexity of PROCESS contains myriads of equations and variables. Virtually
everything depends indirectly on everything else because of the nature of the code structure, so perhaps
it is not surprising that it is often difficult to achieve a successful outcome.

Naturally, problems will occur if some of the parameters become unphysical. For example, if the
aspect ratio becomes less than or equal to one, then we must expect problems to appear. For this
reason, the bounds on the iteration variables should be selected with care.

Occasionally arithmetic (“NaN”) errors are reported. They usually occur when the code is exploring
unphysical values of the parameters, and often suggest that no feasible solution exists for the input
file used.

The error messages produced by the code attempt to provide diagnostic information, telling the user
where the problem occurs, and also suggest a possible solution. These messages are out of necessity
brief, and so cannot promise to lead to a more successful outcome.

There is the option to turn on extra debugging output; to do this, set verbose = 1 in the input file.

4.8.3 Optimisation problems

On reflection it is perhaps surprising that PROCESS ever does manage to find the global minimum
figure of merit value, since if there are nvar iteration variables active the search is over nvar-

Chapter 4 Running PROCESS 74

dimensional parameter space, in which there may be many shallow minima of approximately equal
depth. Remember that nvar is usually of the order of twenty.

The machine found by PROCESS may not, therefore, be the absolutely optimal device. It is quite easy
to have two or more solutions, with results only a few per cent different, but a long way apart in
parameter space. The technique of “stationary” scans is sometimes used in this situation: a scan is
requested, but the same value of the scan variable is listed repeatedly.

Scans should be started in the middle of a range of values, to try to keep the scan within the same
family of machines. The optimum machine found may otherwise suddenly jump to a new region
of parameter space, causing the output variables to seem to vary unpredictably with the scanning
variable.

It should be noted that in general the machine produced by PROCESS will always sit against one or
more operation limits. If, during a scan, the limit being leant upon changes (i.e. if the machine jumps
from leaning on the beta limit to leaning on the density limit) the output parameters may well become
discontinuous in gradient, and trends may suddenly change direction.

4.8.4 Unfeasible results

In the numerics section of the output file, the code indicates whether the run produced a feasible or
unfeasible result.

The former implies a successful outcome, although it is always worth checking that the sum of the
squares of the constraint residuals (sqsumsq) is small (∼ 10−3 or less); the code will issue a warning
if the solver reports convergence but the value of sqsumsq exceeds 10−2. If this occurs, reducing the
value of the HYBRD tolerance ftol or VMCON tolerance epsvmc as appropriate should indicate whether
the result is valid or not; the output can usually be trusted if (1) the constraint residues1 fall as the
tolerance is reduced to about 10−8, and (2) the code indicates that a feasible solution is still found.

An unfeasible result occurs if PROCESS cannot find a set of values for the iteration variables which
satisfies all the given constraints. In this case, the values of the constraint residues shown in the output
give some indication of which constraint equations are not being satisfied — those with the highest
residues should be examined further. In optimisation mode, the code also indicates which iteration
variables lie at the edge of their allowed range.

Unfeasible runs can be caused by specifying physically incompatible input parameters, using
insufficient iteration variables, or by starting the problem with unsuitable values of the iteration
variables.

The utility run process (Section 6.1.2) carries out many runs, changing the starting values of the
iteration variables randomly. It stops once a feasible solution is found.

Another approach is to start with an input file that gives a feasible solution, and modify it step by step
towards the parameters desired. This process is automated by the utility a to b ((Section 6.1.12).

It is important to choose the right number of useful iteration variables for the problem to be solved
— it is possible to activate too many iteration variables as well as too few, some of which may be
redundant.

Both optimisation and non-optimisation runs can fail with an error message suggesting that the
iteration process is not making good progress. This is likely to be due to the code finding itself unable
to escape a region of the parameter space where the minimum in the residuals is significantly above

1The constraint residues are the final values of ci in the constraint equations — see Section 2.5. The value sqsumsq

is the square root of the sum of the squares of these residuals.

Chapter 4 Running PROCESS 75

zero. In this situation, there is either no solution possible (the residuals can therefore never approach
zero), or the topology of the local minimum makes it difficult for the code to escape to the global
minimum. Again, a helpful technique is to either change the list of iteration variables in use, or to
simply modify their initial values to try to help the code avoid such regions.

A technique that occasionally removes problems due to unfeasible results, particularly if an error code
ifail = 3 is encountered during an optimisation run, is to adjust slightly one of the limits imposed
on the iteration variables, even if the limit in question has not been reached. This subtly alters the
gradients computed by the code during the iteration process, and may tip the balance so that the code
decides that the device produced is feasible after all. For instance, a certain component’s temperature
might be 400 K, and its maximum allowable temperature is 1000 K. Adjusting this limit to 900 K
(which will make no difference to the actual temperature) may be enough to persuade the code that
it has found a feasible solution.

Similarly, the order in which the constraint equations and iteration variables are stored in the icc and
ixc arrays can make the difference between a feasible and unfeasible result. This seemingly illogical
behaviour is, sadly, typical of the way in which the code works.

Another technique in such situations may be to change the finite difference step length epsfcn, as
this might subtly change the path taken in the approach towards a solution.

It may be the case that the act of satisfying all the required constraints is impossible. No machine can
exist if the allowed operating regime is too restrictive, or if two constraint equations require conflicting
(non-overlapping) parameter spaces. In this case some relaxation of the requirements is needed for
the code to produce a successful machine design.

4.8.5 Hints

The above sections should indicate that it is the complex interplay between the constraint equations
and the iteration variables that determines whether the code will be successful at producing a useful
result. It can be a somewhat laborious process to arrive at a working case, and (unfortunately, perhaps)
experience is often of great value in this situation.

It should be remembered that sufficient iteration variables should be used to solve each constraint
equation. For instance, a particular limit equation may be A ≤ B, i.e. A = fB, where the f-value f
must lie between zero and one for the relation to be satisfied. However, if none of the iteration variables
have any effect on the values of A and B, and A happens to be greater than B, then PROCESS will
clearly not be able to solve the constraint.

The lower and upper bounds of the iteration variables are all available to be changed in the input
file. Constraints can be relaxed in a controlled manner by moving these bounds, although in some
cases care should be taken to ensure that unphysical values cannot occur. The code indicates which
iteration variables lie at the edge of their range.

It is suggested that constraint equations should be added one at a time, with sufficient new iteration
variables activated at each step. If the situation becomes unfeasible it can be helpful to reset the
initial iteration variable values to those shown in the output from a previous feasible case, and rerun
the code.

Chapter 5

Changing the Source Code: New
Models, Variables and Constraints

It is often useful to add extra features to the code in order to model new situations. This chapter
provides instructions on how to do this, with specific details on how to add various numerics related
items to PROCESS.

Please remember to modify the relevant sections and table(s) in this User Guide if changes are made
to the source code!

5.1 Source Code Modification

Described here are the general rules that apply when the Fortran source code is modified. See
Section 7.3 for instructions on how to commit changes to the PROCESS Git repository and produce
new releases. The variable descriptor file is generated from specially-formatted comment lines within
the source code (see Section 7.2 for more details). Therefore, it is exceedingly important to keep these
lines relevant and in sync with the variables they describe.

5.1.1 Changing the Fortran code

Please ensure that the following rules are adhered to when modifying the PROCESS source code:

1. Keep the layout consistent in with the existing code, including indentation of clauses (if-
statements, do-loops, etc.).

2. Use the standard routine header (see below).

3. Always use implicit none and declare all local variables explicitly.

4. Declare all ‘real’ (i.e. floating-point) variables as real(kind(1.0D0)).

5. Ensure all routine arguments have the appropriate attribute intent(in), intent(out) or
intent(inout), as necessary.

6. Always write explicit real constants using the scientific D notation, e.g. 1.0D0, 2.3D0, -1.23D6.
That is to say, use 1.0D0 and not 1.0 or 1. or 1 when the expression should be using floating-
point arithmetic.

76

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 77

A Fortran 90/95 manual, complete with guidelines for good Fortran 90/95 practice, may be found at
the following webpage:

http://fusweb1.fusion.ccfe.ac.uk/∼pknight/f95notebook.html

5.1.2 Source code documentation

It is critically important to keep the documentation in the source code itself up-to-date, relevant and
tidy. Please keep to the following guidelines whenever the source code is modified.

1. Use comments copiously in the code.

2. Use the standard header layout, and do not omit any of the sections. Here is an example
subprogram header:

! !!

subroutine culblm(bt,dnbeta,plascur,rminor,betalim)

!+ad_name culblm

!+ad_summ Beta scaling limit

!+ad_type Subroutine

!+ad_auth P J Knight, CCFE, Culham Science Centre

!+ad_cont N/A

!+ad_args bt : input real : toroidal B-field on plasma axis (T)

!+ad_args dnbeta : input real : Troyon-like g coefficient

!+ad_args plascur : input real : plasma current (A)

!+ad_args rminor : input real : plasma minor axis (m)

!+ad_args betalim : output real : beta limit as defined below

!+ad_desc This subroutine calculates the beta limit, using

!+ad_desc the algorithm documented in AEA FUS 172.

!+ad_desc <P>The limit applies to beta defined with respect to the total B-field.

!+ad_desc Switch ICULBL determines which components of beta to include (see

!+ad_desc routine constraints for coding):

!+ad_desc

!+ad_desc <P>If ICULBL = 0, then the limit is applied to the total beta

!+ad_desc <P>If ICULBL = 1, then the limit is applied to the thermal beta only

!+ad_desc <P>If ICULBL = 2, then the limit is applied to the thermal +

!+ad_desc neutral beam beta components

!+ad_desc

!+ad_desc The default value for the g coefficient is DNBETA = 3.5

!+ad_prob None

!+ad_call None

!+ad_hist 21/06/94 PJK Upgrade to higher standard of coding

!+ad_hist 09/11/11 PJK Initial F90 version

!+ad_hist 27/06/13 PJK Modified header comments

!+ad_stat Okay

!+ad_docs AEA FUS 172: Physics Assessment for the European Reactor Study

!+ad_docs AEA FUS 251: A User’s Guide to the PROCESS Systems Code

!

! !!!

A description of all the available automatic documentation marker tags (these all start with
!+ad_) may be found by examining the main program header of the (self-documenting!)
automatic documentation program itself (in file autodoc.f90).

3. After every change within a routine, add a new history line (using !+ad_hist, and !+ad_hisc

for continuation lines) to its header. Ensure that all routines called are listed via !+ad_call

http://fusweb1.fusion.ccfe.ac.uk/~pknight/f95notebook.html

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 78

lines. Update the description lines as necessary. You may use html tags and hyperlinks (some are
shown in the example above) as required; to be sure that they have been added correctly, type
make html to create the web documentation and examine the relevant html file (i.e. culblm.html
for the example above) using your favourite web browser.

4. If you add a new routine to a module, remember to modify the header of the module as well as
that of the new routine (add a !+ad_cont line to it).

5. Add suitable documentation to this User Guide whenever a model is added or modified. This
should be done immediately to ensure that the Guide remains consistent with the source code.
Change the code’s revision number and the date in process.tex.

6. Add a new file to the folder release notes. It is particularly important to describe here
any changes to the required IN.DAT - especially any change that makes previous IN.DAT files
unusable.

5.2 Input Parameters

Input parameters (see Section 2.3) are added to the code in the following way:

1. Choose the most relevant module (usually one of those in source file global variables.f90).
Keeping everything in alphabetical order (or possibly within a group of variables closely-related
to a particular switch), add a declaration statement for the new variable, specifying a “sensible”
default value, and a correctly formatted comment line to describe the variable. Copy the
examples already present, such as

!+ad_vars abktflnc /5.0/ : allowable first wall/blanket neutron

!+ad_varc fluence (MW-yr/m2) (blktmodel=0)

real(kind(1.0D0)) :: abktflnc = 5.0D0

Note that the automatic documentation marker tag !+ad_vars tells the autodoc utility
(Section 7.2) that the line is (the first line of) a variable description, while !+ad_varc specifies
any continuation lines. Also note that the colon (:) on the first line is necessary, as it is assumed
to exist by the dictionary-building Python utility for the GUI.

2. Add a dated comment (using !+ad_hist) to the header of the relevant module.

3. Ensure that all the modules that use the new variable reference the relevant module via the
Fortran use statement.

4. Add the parameter to routine PARSE INPUT FILE in source file input.f90 in a suitable place —
keep to alphabetical order. The existing examples provide guidance on how to do this. Note that
real (i.e. double precision) and integer variables are treated differently, as are scalar quantities
and arrays.

5.3 Iteration Variables

New iteration variables (see Section 2.4) are added in the same way as input parameters, with the
following additions:

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 79

1. Increment the parameter ipnvars in module numerics in source file numerics.f90 in order to
accommodate the new iteration variable.

2. Add an additional line to the initialisation of the array ixc in module numerics in source file
numerics.f90.

3. Assign sensible values for the variable’s bounds to the relevant elements in arrays boundl and
boundu in module numerics in source file numerics.f90.

4. Assign the relevant element of character array lablxc to the name of the variable, in module
numerics in source file numerics.f90.

5. Add the variable to routines LOADXC and CONVXC in source file iteration variables.f90,
mimicking the way that the existing iteration variables are coded.

6. Modify the variable’s description in its declaring module (which is likely to be in source file
global variables.f90), to say that it is “(iteration variable XXX)”

7. Add dated comments (using !+ad_hist) to the headers of all affected routines and modules.

8. Modify Table 2.2 of this User Guide (UserGuide Chapter2.tex).

If an existing input parameter is now required to be an iteration variable, then simply carry out the
tasks mentioned here.

It should be noted that iteration variables must not be reset elsewhere in the code. That is, they
may only be assigned new values when originally initialised (in the relevant module, or in the input
file if required), and in routine CONVXC where the iteration process itself is performed. Otherwise, the
numerical procedure cannot adjust the value as it requires, and the program will fail.

5.4 Other Global Variables

This type of variable embraces all those present in the modules in global variables.f90 (and some
others elsewhere) which do not need to be given initial values or to be input, as they are calculated
within the code. These should be added to the code in the following way:

1. Choose the most relevant module (usually one of those in source file global variables.f90).
Keeping everything in alphabetical order (or possibly within a group of variables closely-related
to a particular switch), add a declaration statement for the new variable, specifying the initial
value 0.0D0, and a correctly formatted comment line to describe the variable (copying the
examples already present — see also “Input Parameters” above).

2. Ensure that all the modules that use the new variable reference the relevant module via the
Fortran use statement.

5.5 Constraint Equations

Constraint equations (see Section 2.5) are added to PROCESS in the following way:

1. Increment the parameter ipeqns in module numerics in source file numerics.f90 in order to
accommodate the new constraint.

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 80

2. Add an additional line to the initialisation of the array icc in module numerics in source file
numerics.f90.

3. Assign a description of the new constraint to the relevant element of array lablcc, in module
numerics in source file numerics.f90.

4. Add a new Fortran case statement containing the new constraint equation to routine
CONSTRAINT EQNS in source file constraint equations.f90, ensuring that all the variables
used in the formula are contained in the modules specified via use statements present at the
start of this file. Use a similar formulation to that used for the existing constraint equations,
remembering that the code will try to force cc(i) to be zero.

5. Add dated comments (using !+ad_hist) to the headers of all affected routines and modules.

6. Modify Table 2.4 of this User Guide (UserGuide Chapter2.tex).

Remember that if a limit equation is being added, a new f-value iteration variable may also need to
be added to the code.

5.6 Figures of Merit

New figures of merit (see Section 2.6) are added to PROCESS in the following way:

1. Increment the parameter ipnfoms in module numerics in source file numerics.f90 to
accommodate the new figure of merit.

2. Assign a description of the new figure of merit to the relevant element of array lablmm in module
numerics in source file numerics.f90.

3. Add the new figure of merit equation to routine FUNFOM in source file evaluators.f90, following
the method used in the existing examples. The value of fc should be of order unity, so select
a reasonable scaling factor if necessary. Ensure that all the variables used in the new equation
are contained in the modules specified via use statements present at the start of this file.

4. Add dated comments (using !+ad_hist) to the headers of all affected routines and modules.

5. Modify Table 2.5 of this User Guide (UserGuide Chapter2.tex).

5.7 Scanning Variables

Scanning variables (see Section 2.7) are added to PROCESS in the following way:

1. Increment the parameter ipnscnv in module scan module in source file scan.f90 to
accommodate the new scanning variable.

2. Add a short description of the new scanning variable to the nsweep entry in source file scan.f90.

3. Add a new assignment to the relevant part of routine SCAN in source file scan.f90, following
the examples already present, including the inclusion of a short description of the new scanning
variable in variable xlabel.

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 81

4. Ensure that the scanning variable used in the assignment is contained in one of the modules
specified via use statements present at the start of this routine.

5. Add dated comments (using !+ad_hist) to the headers of all affected routines and modules.

6. Modify Table 2.6 of this User Guide (UserGuide Chapter2.tex).

5.8 Submission of New Models

The PROCESS source code is maintained by CCFE, and resides in a Git [72] repository on the CCFE
servers. We welcome contributions of alternative or improved models and algorithms.

We request that contributors provide the following information for any new models that they provide:

• A comprehensive description of the model; please provide a full list of references.

• A list of all inputs and outputs: descriptions, default (input) values, allowed ranges, units.

• If possible, please cross-reference any input/output variables to existing global variables listed
in the variable descriptor file (see Section 2.2).

• Any new input parameters, iteration variables, constraint equations, figures of merit etc.

• A definition of any pre-requisites.

• Any available test data, code examples or test programs in any language.

5.9 Code Structure

5.9.1 Numerics modules

These modules contain the equation solvers, their calling routines and other relevant procedures.
Various mathematical routines from a number of standard libraries are also incorporated into these
files. Table 5.1 summarises the numerics source files.

source file description

caller.f90 calls physics, engineering, building and cost routines
constraint equations.f90 defines the constraint equations
evaluators.f90 function evaluators for HYBRD and VMCON packages
iteration variables.f90 adjusts values of iteration variables
maths library.f90 miscellaneous ‘black-box’ maths routines, including HYBRD and VMCON

numerics.f90 numerics array definitions, and calling routines for HYBRD and VMCON packages
scan.f90 performs a parameter scan

Table 5.1: Summary of the numerics modules in PROCESS.

5.9.2 Physics modules

These modules contain the main physics routines that evaluate the plasma and fusion parameters.
Also included here are the routines describing the current drive and divertor systems. Table 5.2
summarises the main physics source files.

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 82

source file description

current drive.f90 current drive efficiency calculations
divertor.f90 divertor model calculations
fispact.f90 nuclide inventory/activation calculations
ife.f90 inertial fusion energy physics/engineering
impurity radiation.f90 radiation power calculations
physics.f90 tokamak plasma and fusion calculations
plasma geometry.f90 plasma geometry algorithms
plasma profiles.f90 plasma density and temperature profile calculations
rfp.f90 reversed field pinch physics/engineering
startup.f90 plasma start-up auxiliary power requirements
stellarator.f90 stellarator-relevant physics/engineering

Table 5.2: Summary of the physics modules in PROCESS.

5.9.3 Engineering modules

These modules contain the description of the machine geometry and its major systems, including the
PF and TF coil sets, the first wall, blanket and shield, and other items such as the buildings, vacuum
system, power conversion and the structural components. Table 5.3 summarises the main engineering
source files.

source file description

availability.f90 plant component lifetimes and overall availability
buildings.f90 buildings calculations
fwbs.f90 first wall, blanket and shield calculations
machine build.f90 machine build calculations
pfcoil.f90 PF coil calculations
plant power.f90 heat transport and power balance calculations
pulse.f90 pulsed power plant calculations
safety.f90 steady-state temperatures after a LOCA event
sctfcoil.f90 superconducting TF coil calculations
structure.f90 support structure calculations
tfcoil.f90 resistive TF coil calculations
vacuum.f90 vacuum system calculations

Table 5.3: Summary of the engineering modules in PROCESS.

5.9.4 Costing module

The costing module, costs.f90, performs all the cost calculations, including values in M$ for each
machine system, and the cost of electricity in m$/kWh. Normally, the machine costs are written to
the output file; if this is not required set switch output costs = 0.

5.9.5 Other modules

These modules perform miscellaneous tasks, such as initialisation of variables and file input / output.
File process.f90 contains the main program, and includes the overall controlling loop.

Chapter 5 Changing the Source Code: New Models, Variables and Constraints 83

Table 5.4 summarises these modules.

source file description

error handling.f90 centralised error handling module
fson library.f90 library used to read in data from JSON-format files
global variables.f90 defines and initialises most shared variables
initial.f90 checks self-consistency of input variables and switches
input.f90 reads in user-defined settings from input file
output.f90 utility routines to format output to file
process.f90 main program and top-level calling routines

Table 5.4: Summary of the remaining modules in PROCESS.

Chapter 6

Utility Programs

A number of utilities for PROCESS are available, for instance to modify the input file IN.DAT, run
PROCESS until a feasible solution is found, or to extract and plot data from the PROCESS output. All
utilities are available from PROCESS/master/utilities.

For PROCESS users, only the executables described in Section 6.1 are relevant. For anyone interested
in modifying the existing code or developing new utilities the PROCESS Python libraries are described
in Section 6.2.

All executables use Python library functions either from the publicly available numpy, scipy and
matplotlib libraries or the PROCESS Python libraries documented in Section 6.2. To use the PROCESS
Python libraries you need to make sure their directory is in your Python path. Use the commands
given in Section 4.1 to do this.

All Python code has been written for Python 3.

6.1 Executables

All executables can be run by using any of the following commands:

python executable_name.py

python3 executable_name.py

executable_name.py

and they typically have a short description of their usage when putting -h or --help as arguments:

executable_name.py -h

Some executables come with a configuration file that typically follows the naming convention
executable name.conf. To run the executable please copy the config file into your own work directory.
Do NOT try to edit the config file in the PROCESS directory.

6.1.1 Turn output into input (write new in dat.py)

This program modifies a given IN.DAT file such that the specified initial values of all the iteration
variables are given by their values in OUT.DAT.

84

Chapter 6 Utility Programs 85

Input: IN.DAT, OUT.DAT

Output: new IN.DAT

6.1.2 Randomly vary the starting point (run process.py)

This program runs PROCESS many times, randomly varying the initial values of the iteration variables
until a feasible solution is found. Stops when a feasible solution is found. If in the course of a scan
some scan points result in feasible solutions and some do not, run process.py will stop if and only if
the number of unfeasible scan points is less than or equal to the parameter NO ALLOWED UNFEASIBLE.

Input: run process.conf (optional), IN.DAT

Output: A directory is created for each run. containing all the standard PROCESS output,
process.log (log file), and README.txt (contains comments from config file)

Configuration Options: The configuration file run process.conf has the following style:

* This is a comment in the config file!

* Path to working directory in which PROCESS is run.

WDIR = Run1

* original IN.DAT name

ORIGINAL_IN_DAT = demo1a_10_sep_13.IN.DAT

* PATH to PROCESS binary

PROCESS = ~PROCESS/master/process

* ONE line comment to be put into README.txt

COMMENT = This is a test DEMO run! ;-)

* Maximum number of PROCESS runs

NITER = 5

* integer seed for random number generator; use None for random seed

SEED = 2

* factor within which the iteration variables are changed

FACTOR = 1.5

* Number of allowed unfeasible points that do not trigger rerunning.

NO_ALLOWED_UNFEASIBLE = 0

* include a summary file with the iteration variables at each stage.

INCLUDE_ITERVAR_DIFF = True

* add iteration variables - comma separated

ADD_IXC = 99, 77

* remove iteration variables - comma separated

DEL_IXC =

* add constraint equations - comma separated

ADD_ICC = 57,

* remove constraint equations - comma separated

DEL_ICC =

* set any variable to a new value

Chapter 6 Utility Programs 86

* the variable does not have to exist in IN.DAT

VAR_TFTORT = 1.9

VAR_EPSVMC = 1e-4

* remove variables

DEL_VAR_IITER

A configuration file with an alternative name can be specified using the optional argument

run_process.py -f CONFIGFILE

6.1.3 List PROCESS runs with comments (build index.py)

Creates an index of all PROCESS run comments, after they have been created by run process in a
series of subfolders.

Input: None

Output: Index.txt

Configuration Options: Optional arguments are:

change the name of the file containing the folder description

build_index.py -r README.txt

append the results to Index.txt instead of creating a new file

build_index.py -m a

change the name of the subfolder Base - default=Run

build_index.py -b Base

give a list of subfolder suffixes - default=all

build_index.py -s 1-4,6,8,9-12

increase verbosity

build_index.py -v

An example Index.txt file might look like this

Run1:

Original run

Run2:

Changed the no. TF coils

...

Chapter 6 Utility Programs 87

6.1.4 test process.py

This program has a similar structure to the run process.py program, but varies the iteration variable
start parameters for as many iterations as requested by the configuration file. It outputs a summary
of the final iteration parameter values and figure of merit values for testing the accuracy of the
optimisation solver in PROCESS.

Input: test process.conf, an IN.DAT file as specified in the config file

Output: All the standard PROCESS output, process.log, README.txt, time.info (stores the run
time of actual PROCESS iterations), SolverTest.out

The SolverTest.out file contains a table of the ifail values (see Table A.1), the figure of merit,
the square root of the sum of the squares of the individual constraints as well as the initial and final
values for the iteration variables and the individual constraint residuals. The value of Q, i.e. the ratio
of fusion power to injected power, is also included in the SolverTest.out file. All values can be used to
diagnose the performance of the optimisation solver.

Configuration Options: The configuration file test process.conf has the following style:

* No iterations

NITER = 1000

* Working directory: Subdirectory in which to copy IN.DAT and test_process.conf

WDIR=Run1/

* original IN.DAT name (should not be called IN.DAT!)

ORIGINAL_IN_DAT = minimal_demo2_nosweep.IN.DAT

* sets flag of same name in IN.DAT:

* None - keeps original value

* -1 - Non-optimisation only

* 0 - one non-optimisation step followed by optimised iteration

* 1 - optimisation only

IOPTIMZ = 1

* sets the error tolerance for VMCON

* None - keeps the original value (IN.DAT or default)

EPSVMC = None

* sets the step length for the finite difference derivatives

* None - keeps the original value (IN.DAT or default)

EPSFCN = None

*sets the figure of merit

*positive value - minimise, negative value - maximise

Chapter 6 Utility Programs 88

* None - keeps the original value

* 1 - plasma major radius

* 6 - cost of electricity

MINMAX = None

* integer seed for random number generator; use None for random seed

SEED = 2

* factor within which the iteration variables are changed

FACTOR = 1.1

* PATH to PROCESS binary

PROCESS=process.exe

A configuration file with an alternative name can be specified using the optional argument

test_process.py -f CONFIGFILE

6.1.5 Output plotting: create data file (make plot dat.py)

Creates a PLOT.DAT-type file from MFILE.DAT. This is required by plot sweep.py.

Input: make_plot_dat.conf, MFILE.DAT

Output: make_plot_dat.out

Configuration Options: Optional arguments are:

new variables for output

make_plot_dat.py -p rmajor

writes make_plot_dat.out in columns

make_plot_dat.py --columns

resets make_plot_dat.conf to PLOT.DAT layout

make_plot_dat.py --reset-config

file to read as input

make_plot_dat.py -f MFILE.DAT

run with default parameters

make_plot_dat.py --defaults

An example version of make plot dat.conf might look like this:

make_plot_dat.out config file.

rmajor

aspect

Chapter 6 Utility Programs 89

rminor

bt

powfmw

pnetelmw

te

pdivt

strtf1

strtf2

6.1.6 Create a two-page summary (plot proc.py)

A utility to produce a two-page summary of the output, including the major parameters, poloidal and
toroidal cross-sections, and temperature and density profiles.

Input: MFILE.DAT

Output: proc_plot_out.pdf (or as specified by user)

Configuration Options: Optional arguments are:

change the input file name

python plot_proc.py -f MFILE.DAT

change the output file name

python plot_proc.py -o out.pdf

show the plot as well as saving the figure

python plot_proc.py -s

6.1.7 output data.py

A utility to output a set of data very similar to plot proc.py, but to a comma-delimited format for
inclusion in spreadsheets. Not recommended - it’s best to use PLOT.DAT instead, as this is always
generated by PROCESS, and can be easily loaded into a spreadsheet.

Input: MFILE.DAT(or as specified by user)

Output: process_summary.txt (or as specified by user)

Configuration Options: Optional arguments are:

change the input file name

python output_data.py -f MFILE.DAT

change the output file name

python output_data.py -o out.txt

Chapter 6 Utility Programs 90

6.1.8 plot sweep.py

This utility plots normalised values from PLOT.DAT and allows comparisons of changes in values from
a sweep compared to the first point in the sweep. It is now deprecated due to the existence of more
flexible sweep-generating and output-handling utilities.

Input: PLOT.DAT as output by make plot dat.py

Output: PLOT.DAT.eps (default or as specified by user)

Configuration Options: Optional arguments are:

creates PLOT.DAT.eps with R0, IP, beta

python plot_sweep.py -g 11 13 18

creates demo1.png with Te, n

python plot_sweep.py -o demo1.png 21 22

6.1.9 Plot scan results (plot mfile sweep.py)

This utility plots normalised values of the iteration variables output by a parameter scan. Zero
indicates an iteration variable at its lower bound and 1 an iteration variable at its upper bound.

Input: MFILE.DAT

Output: sweep fig.pdf (default or as specified by user)

Optional arguments are:

creates sweep_fig.pdf with R0, te, aspect (same variable names as in MFILE.DAT)

python plot_mfile_sweep.py -p rmajor te aspect

creates demo1.png with Te, n

python plot_mfile_sweep.py -o demo1.png -p te dene

creates a sweep_fig.pdf with R0, aspect with a different MFILE.DAT

python plot_mfile_sweep.py -f diff_mfile.dat -p rmajor aspect

Show plot to screen instead of saving with R0 and aspect

python plot_mfile_sweep.py -p rmajor aspect --show

Use -h or --help for help

6.1.10 Plot iteration variables and constraint residuals (diagnose process.py)

This utility aids the user to interpret PROCESS runs that do not find a feasible solution (unless PROCESS
has terminated prematurely). It reads the MFILE.DAT and plots the normalised iteration variables, i.e.
the iteration variable values normalised to their bounds such that 0 indicates an iteration variable at
its lower bound and 1 an iteration variable at its upper bound. Furthermore, it shows the normalised
constraint residuals.

Input: MFILE.DAT

Chapter 6 Utility Programs 91

Output: Displays plots on screen, still need to be saved by the user! (Remember to use -Y or -X,
if sshing into a remote machine!)

Optional arguments are:

allows to specify another location/name for the MFILE

python diagnose_process.py -f MFILE.DAT

Use -h or --help for help

6.1.11 fit profile.py

This is a Python tool to fit a general temperature or density profile as given by the pedestalised profile
parametrisation (ipedestal =1) to an ascii table. It is using a least squares method and is fitting the
position of the pedestal as well as the peaking factors. Optional arguments are

-h, --help show this help message and exit

-f FILENAME, --filename FILENAME

ascii file containing data in columns, default =

profile.txt

-r RHO, --rho RHO column of the normalised radius rho=r/a, default = 0

-n DENSITY, --density DENSITY

column of the density profile, default = 1

-t TEMPERATURE, --temperature TEMPERATURE

column of the temperature profile, default = 2

-rn RHOPEDN, --rhopedn RHOPEDN

user defined initial guess of the density pedestal

position, if outside [0,1] starts at 0.9, default =

0.9

-rt RHOPEDT, --rhopedt RHOPEDT

user defined initial guess of the temperature pedestal

position, if outside [0,1], starts at 0.9, default =

0.9

If the column of the density or temperature data does not exist, it is ignored. A warning is issued.

6.1.12 Step from one model to another (a to b.py)

When attempting to model a reactor very different from those in previous studies, it can be difficult to
find a feasible solution. This utility takes an initial IN.DAT (A.DAT) that is known to run successfully,
and a target IN.DAT (B.DAT) that is substantially different. The difference is broken into small steps,
and PROCESS runs repeatedly, stepping from the initial input file to the target input file. After each
step, the output values of the iteration variables are used as the input starting values for the next
step.

Input: a to b.conf, A.DAT and its corresponding MFILE.DAT, B.DAT. (These names can be changed
by the user.)

Chapter 6 Utility Programs 92

Output

When the program finishes, the .DAT files from the last run of PROCESS can be found in the
specified working directory.

If option keep output = True, then IN.DAT, OUT.DAT, MFILE.DAT and logged PROCESS output of
each step are stored. Files are prefaced with their step number eg. 003.IN.DAT and copied to
the specified output directory.

Configuration Options: The configuration file a to b.conf has the following style:

*Comment line

*Working directory to store temporary files, default = wdir

wdir = wdir

*Switch to keep .DAT files for every step, default = True

keep_output = True

*Directory for output if keep_output = True, default = steps

outdir = steps

*IN.DAT file for A, default = A.DAT

a_filename = A.DAT

*IN.DAT file for B, default = B.DAT

b_filename = B.DAT

*Path to process binary

*path_to_process = /home/PROCESS/master/process

path_to_process = /home/PROCESS/master/process

*Number of iterations of vary_iteration_variables to run, default = 20

vary_niter = 20

*Number of steps to go from A to B, default = 10

nsteps = 10

*Factor to vary iteration variables within, default = 1.2

factor = 1.2

*Gap between upper and lower bounds to narrow to, default = 1.001

bound_gap = 1.001

Chapter 6 Utility Programs 93

6.1.13 N-Dimensional Scanner Utility

This suite of Python utilities allows the user to conduct systematic, multi-dimensional parameter
studies with PROCESS. It systematically varies a set of N user defined parameters within predefined
bounds. The final results can be evaluated using the corresponding visualisation tool and/or saved in
standard NetCDF format for further analysis.

The suite contains the following executables

• ndscan.py - executes the Nd-scan as specified in the configuration file.

• ndscan package only.py - creates a NetCDF output file from a previous Nd-scan run.

• ndscan and package.py - both executes the Nd-scan and creates the NetCDF output file.

• ndscan visualisation.py - visualises the NetCDF output.

Input: ndscan.json, IN.DAT

Output: All MFILES in subdirectory MFILES, packaged NetCDF output file as named in
configuration file (default “NdscanOutput.nc”).

When running any of the ndscan tools, optional arguments are:

#to specify another location/name for the configfile

ndscan.py -f CONFIGFILE

Use -h or --help for help

For the visualisation tool the corresponding NetCDF input file can also be specified with -f. Per
default “NdscanOutput.nc” is used.

Configuration Options: The configuration file ndscan.json uses the JSON format1 and has the
following style

{

"axes": [

{

"lowerbound": 7.5,

"steps": 16,

"upperbound": 9.0,

"varname": "rmajor"

},

{

"lowerbound": 5.5,

"steps": 16,

"upperbound": 7.0,

1www.json.org

Chapter 6 Utility Programs 94

"varname": "bt"

}

],

"_comment": [

"This field helps to describe the config file for users reading",

"Anything you write in here will be ignored by the code",

"Each axis has these configuration parameters available:",

"varname",

"lowerbound",

"upperbound",

"’steps’: number of evaluations"

],

"optionals": {

"remove_scanvars_from_ixc": true,

"smooth_itervars": true

},

"description": "Description of the goals of this specific run",

"title": "NdscanOutput",

"author": "Me",

"output_vars": [

"beta",

"pheat",

"powfmw",

"pradmw",

"powerht",

"cirpowfr",

"te",

"hfact",

"dnelimt",

"dene",

"rmajor",

"bt",

"pnetelmw",

"coe",

"fwbllife",

"capcost",

"palpmw",

"wallmw",

"taueff"

]

}

The only required input parameter in the configuration file are the scan axes, out of which at least one
has to be specified. For each axis a varname, a lowerbound, an upperbound and the number of steps
> 1 have to be specified. All other parameters in the configuration file are optional. The parameters
relevant for running the N-dimensional scan are:

comment Anything in the comment section (like all other undefined sections) is for the user only and

Chapter 6 Utility Programs 95

will be ignored by the program.

optionals:remove scanvars from ixc Removes all scanning variables from the iteration variables
of the IN.DAT file (default=True).

optionals:smooth itervars Ensures that each next point starts from the last successful run. This
increases the run time, but improves convergence and reduces errors.

The parameters only relevant to the creation of the summary NetCDF file are:

author The author will be copied into the NetCDF file.

description The description will be copied into the NetCDF file.

title Name of the output NetCDF file (default NdscanOutput) that is also copied into the title of
the NetCDF file.

output vars The variables that will be extracted from the MFILEs and stored in the NetCDF file.
(Only needed when creating the NetCDF output file.)

Additional parameters can be specified as in the config section for the evalualte uncertainties.py

tool, see section 6.1.14.1.

The resulting NetCDF file can be visualised using the ndscan visualisation.py tool. It has an
interactive menu and is fairly self-explanatory.

6.1.14 Uncertainty Tools

In this section, we explain the usage of the PROCESS tools to both evaluate the uncertainties of a design
point as well as display them using a simple plotting facility.

Note that the uncertainty evaluation tool has a significantly longer run time than typical evaluations
of PROCESS design points and therefore should only be used once a suitable design point has been
found. As only user selected output data is kept, the user is recommended to put careful thought into
the list of needed output variables.

6.1.14.1 evaluate uncertainties.py

This program evaluates the uncertainties of a single PROCESS design point by use of a Monte Carlo
method as described in [83]. It takes a set of uncertain parameters as input, each of which can have
either a Gaussian or a flat (’top-hat’) probability distribution. These are specified together with
optional details about the PROCESS run in a configuration file. Additionally, an IN.DAT file describing
the relevant design point needs to be present. (If necessary this can be created from an MFILE.DAT by
using the write new indat.py tool.)

When running the evaluate uncertainties.py tool, optional arguments are:

#to specify another location/name for the configfile

evaluate_uncertainties.py -f CONFIGFILE

Use -h or --help for help

Chapter 6 Utility Programs 96

Input: evaluate uncertainties.json,
IN.DAT (or an alternative input file as specified in the config file)

Output:
uncertainties.nc. This file (NetCDF format) can be visualised using the
display uncertainties.py tool.
Readme.txt,
process.log,
PROCESS output from the last run.

The configuration file evaluate uncertainties.json uses the JSON format2, and has the following
style

{

"_description": "Config file for uncertainties evaluation",

"_author": "Hanni Lux",

"config": {

"runtitle": "testrun for uncertainty tool on DEMO2",

"IN.DAT_path": "IN.DAT_demo2",

"process_bin": "~PROCESS/master/process.exe",

"working_directory": "Run1",

"pseudorandom_seed": 2

},

"uncertainties": [

{

"Varname":"flhthresh",

"Errortype":"Gaussian",

"Mean":1.0,

"Std":0.05

},

{

"Varname":"coreradius",

"Errortype":"Uniform",

"Lowerbound":0.6,

"Upperbound":0.9

},

{

"Varname":"etanbi",

"Errortype":"Relative",

"Mean":0.3,

"Percentage":10.0

},

{

"Varname":"boundu(9)",

"Errortype":"LowerHalfGaussian",

2www.json.org

Chapter 6 Utility Programs 97

"Mean":1.2,

"Std":0.1

},

{

"Varname":"boundl(103)",

"Errortype":"UpperHalfGaussian",

"Mean":1.0,

"Std":0.25

}

],

"output_vars": ["rmajor", "dene", "te", "bt"],

"no_samples": 1000

}

By convention, we have designated metadata about the PROCESS runs as having a preceding underscore
to distinguish these values from the other configuration data used directly by the tools or PROCESS

itself. Furthermore, all the optional attributes that can be changed when running PROCESS from most
Python utilities like e.g. run process.py can be specified in the “config” section. All these values
have default values and do not need to be set.

runtitle is a one line description of the purpose of the run to be saved in Readme.txt in the working
directory as well as the runtitle parameter in the OUT.DAT and MFILE.DAT files. Per default it is
empty.

IN.DAT path is the name/path of the IN.DAT file describing the design point. If not specified it is
assumed to be IN.DAT.

process bin is the process binary that should be used. The default assumes that the user works
on the CCFE Fusion Linux machines and has executed the module commands for PROCESS

as described in 4.1. Then either the master or development branch of process is being used
depending on which module has been loaded.

working directory represents the working directory, in which PROCESS will be executed, in case this
is supposed to be different to the current directory which can be helpful when executing several
runs with slightly different setups.

pseudorandom seed is the value of the seed for the random number generator. It can be any integer
value. If it is not specified, its default value is taken from the system clock.

Other parameters that can be specified in the config section are Niter and factor. Both do not
typically need to be changed by the user. Niter is the maximum number of retries that the tool will
attempt, if PROCESS fails to find a feasible solution. This means that the tool varies the start values of
the iteration variables within a factor given by factor of the original values as this does not change
the physical meaning of the input file, but can help the solver to find a better starting point for its
iteration. Their default values are Niter=10 and factor=1.5.

Any uncertain parameters should be specified in the “uncertainties” section. Each parameter is
specified in its own sub dictionary as shown in the example. For each, the Varname and Errortype

need to be specified as well as the Mean and standard deviation Std for Gaussian type errors as well as
Lowerbound and Upperbound for Uniform or Mean and a Percentage for Relative errors. Apart from

Chapter 6 Utility Programs 98

a standard Gaussian distribution, also a lower and an upper half Gaussian distribution are available
that have a sharp cut off at the mean. Please note, that all distributions are being cut off at the
boundaries for the input values for PROCESS! At least one uncertain parameter has to be specified
for the program to run and technically there is no upper limit as to how many uncertain parameters
can be used. However, for large numbers of uncertain parameters it is recommended to increase the
number of sampling points.

There are a number of other parameters in the configuration file that can be specified:

output vars is a list of strings of output variable names in the MFILE.DAT. These are the variables
saved. This list is empty by default and it is therefore crucial for the user to specify the variables
of interest because otherwise the tool will not run.

no samples sets the number of sample points in the Monte Carlo method. It is by default set to its
recommended minimum value of 1000, but the user should contemplate higher values especially
if a large number of uncertain parameters is involved.

Two parameters that can be further set in the config file (but are not recommended to be changed)
are the number of scan points no scans which is by default 5 and the number of allowed unfeasible
points in a scan no allowed unfeasible which is 2 as recommended in [83].

As the distributions of the uncertainties do not have to be represented by a simple Gaussian, reducing
the output to two simple numbers like a mean and a standard deviation is not typically possible.
Therefore, we have decided to keep all sampled points in the output files. However, to reduce the
amount of data we have decided to only store the user specified parameters in the form of a NetCDF
binary file. Given that a scan is performed at each sample point, only the last of these scan points is
ever kept for evaluation. (There is an option for developers to keep all the data for debugging purposes.
However, this should typically not be used in production runs.) These files can be visualised using
the display uncertainties.py tool.

6.1.14.2 display uncertainties.py

This is a utility to display the output file uncertainties.nc created by the
evaluate uncertainties.py tool described above.

By default, if run in the working directory of an uncertainty evaluation, it creates a scatter plot of each
user defined output parameter against the next parameter in the list. It also shows the 1D histograms
of each parameter distribution. If two specific variables are given as arguments, the tool plots only
these two against each other.

Input: uncertainties.nc

Output: Uncertainties varname1 varname2.pdf

Usage:

display_uncertainties.py [-h] [-f FILENAME] [-e END] [v [v ...]]

Program to display uncertainties of a given PROCESS design point.

positional arguments:

v list of variables to be plotted; default = all

Chapter 6 Utility Programs 99

optional arguments:

-h, --help show this help message and exit

-f FILENAME, --filename FILENAME

uncertainties data file, default = uncertainties.nc

-e END, --end END file format default = .pdf

6.1.15 create dicts.py

This automatically generates the process dicts.py file used by PROCESSutility programs. It does
this by scanning the Fortran source code. The standard output should be redirected, using

create_dicts.py > process_dicts.py

6.1.16 Batch Jobs

As PROCESS typically runs very fast and does not produce much data output, it is not typically
necessary to submit PROCESS runs or any of the python executables as a batch job to the fusion linux
machines. However, the evaluate uncertainties.py tool is one example of a python tool for PROCESS
that does run for a long time and does create a lots of output. As the CPU time limit for any non-
batch jobs on the fuslw machines is 30 Minutes, any decently sampled evaluate uncertainties.py

run will need to be submitted as a batch job. (Please note, that if you have forgotten to submit your
job as a batch job, your job will be terminated after 30 CPU minutes, but as the output is written to
file continuously, you should not loose any of the output that has been produced until then.)

To submit a batch job, first create a file called e.g. myjob.cmd. It should contain the following content

@ executable = evaluate_uncertainties.py

@ arguments

@ input = /dev/null

@ output = /ABSOLUTE_PATH_TO_WORK_DIR/ll.out

@ error = /ABSOLUTE_PATH_TO_WORK_DIR/ll.err

@ initialdir = /ABSOLUTE_PATH_TO_WORK_DIR/

@ notify_user = USERNAME

@ notification = complete

@ queue

module use /home/PROCESS/modules

module swap python

module load process/master

evaluate_uncertainties.py

Once you have created the file you can submit a batch job by typing

llsubmit myjob.cmd

While your job is running you can keep track of its
progress by typing llq or xloadl. More information and help with troubleshooting can be found
under http://fusweb1.fusion.ccfe.ac.uk/computing/funfaq/ll/.

http://fusweb1.fusion.ccfe.ac.uk/computing/funfaq/ll/

Chapter 6 Utility Programs 100

As the uncertainties.nc output file can get quite large, it might be indicated to write the output to
the /scratch or /tmp directories as they have faster I/O. Please remember to copy your results into
your home directory afterwards, as these directories are not backed up and will be frequently cleaned.

6.1.17 mfile comparison.py

Tool for comparing two MFILEs and outputting significant differences in numerical values.

Arguments
-f Files to compare
-s Save output to file called comp.txt
--acc Percentage difference threshold for reporting
--verbose Additional output

6.1.18 test suite.py

The PROCESS test suite allows PROCESS developers to quickly test new modifications to PROCESS
using a defined library of reference cases. The test suite is bundled with PROCESS and is a single
Python script (test suite.py) with a number of options.

The test suite will provide the following output

• Summary to terminal and file (summary.log)

• PROCESS terminal output log to file for each test case (run.log)

• PROCESS error log to terminal and to file if errors for each test case (error.log)

• New MFILE.DATs and OUT.DATs for each test case (new.MFILE.DAT and
new.OUT.DAT)

6.1.18.1 Folder Structure

The PROCESS folder structure is shown below. The test suite folder (test suite) is in the main
directory with the FORTRAN files. Inside the test suite folder there is the main code (test suite.py)
as well as the folders containing the reference cases (test files). The figure below shows the folder
structure for the test suite.

6.1.18.2 Adding a reference case

To add a reference case if you have a local PROCESS repository:

1. Have an IN.DAT that works with the current version of PROCESS

2. Run PROCESS to create an OUT.DAT and MFILE.DAT

3. Create a folder in the location /my develop/test suite/test files/[test name] with a
suitable name for the test case (if your local PROCESS folder is my develop).

4. Copy your IN.DAT, OUT.DAT and MFILE.DAT into this folder

Chapter 6 Utility Programs 101

5. Copy IN.DAT as ref.IN.DAT

6. Rename OUT.DAT as ref.OUT.DAT

7. Rename MFILE.DAT as ref.MFILE.DAT

8. cd ../.. to return to test suite folder

9. test suite.py to run the test suite to check it works

10. Commit to Git locally and push to the central repository (see instructions in PROCESS manual)

process

test suite

test suite.py

test files

Example Test case

README.txt

IN.DAT

ref.IN.DAT

ref.MFILE.DAT

ref.OUT.DAT

test area

summary.log

Example Test case

README.txt

run.log

diff.log

IN.DAT

ref.IN.DAT

ref.MFILE.DAT

ref.OUT.DAT

new.MFILE.DAT

new.OUT.DAT

Figure 6.1: PROCESS Test suite folder structure after a test run. The test area folder is where the
output of the test run is stored. Each test case has a README file which outlines the reasoning for
the test.

Chapter 6 Utility Programs 102

6.1.18.3 Running the Test Suite

To run the test suite the user should go to the folder /process/test suite/ and then run the Python
file test suite.py. The test suite Python script has the following optional arguments.

python test_suite.py [options]

-h - -help show usage

-s --save save test output to folder with PROCESS revision

number in it(e.g. test_r383)

-d --diff [val] set allowed difference between reference case and

new output in percentage terms.

-r --ref choose reference folder to use for the test cases

default is "test_files"

--debug run reference cases prefixed with "error_" for

testing of the error handling in the test suite

Examples

python test_suite.py -d 10 --save

python test_suite.py -d 1

6.1.18.4 Test Suite Output Formatting

summary.log

The summary.log file mirrors what was displayed to the terminal during a test suite run. It will look
something like the following.

PROCESS Test Suite

Date: 2015-12-03

Diff set to: 5.0%

PROCESS Test Cases

Test ==> DEMO1_a31_06_2015 DIFF(6)

Test ==> costs_paper OK

Test ==> test 3 ERROR

Test ==> test 4 OK

PROCESS version r[version] test run complete

Chapter 6 Utility Programs 103

diff.log

This file will contain the differences between the reference case and the new run for a given test. The
file will look like the example below.

PROCESS Test Suite

Test Case: [test_name]

Difference value: [diff]

Differences above allowed value:

var | ref | new | %

a 10 15 50

b 10 9 10

...

Variables in ref NOT IN new:

var 1

var 2

...

Variables in new NOT IN ref:

var 1

var 2

...

run.log

Run.log will take the output to the terminal for each PROCESS test case and dump it to a file in
the test folder in /process/test suite/test area/[test name]/. If there is an error while running
PROCESS this will be highlighted in summary.log and then the user can inspect the output in
run.log

new.MFILE.DAT

This is the MFILE.DAT the test suite created when running a given test case. After running the test
suite will move this file to the folder /process/test suite/test area/[test name]/.

Chapter 6 Utility Programs 104

new.OUT.DAT

This is the OUT.DAT the test suite created when running a given test case. After running the test
suite will move this file to the folder /process/test suite/test area/[test name]/.

6.2 Python Libraries

All library modules and functions are documented using docstrings. These can be accessed by reading
the code directly or via the help() function in Python.

6.2.1 in dat.py

A set of Python classes to read, modify and write an IN.DAT file.

INVariable(name, value, comment="") Initialises an IN.DAT variable class which requires a name
and a value.

INModule(name) Initialises an IN.DAT module class which requires a name. This class stores
information for an IN.DAT file which has modules separated with lines with $MODULE NAME
and $END.

INModule.add_variable(var) Adds an INVariable object to the INModule class.

INModule.remove_variable(variable_name) Removes an INVariable object from the INModule

class.

INModule.add_line(line) Adds a line from the IN.DAT that isn’t a variable line (e.g. a comment)
to the INModule class.

INModule.get_var(var_name) Returns an INVariable object from the INModule class.

INModule.add_constraint_eqn(eqn_number) Adds constraint equation eqn_number to the list of
constraint equations InVariable class if the equation is not already in the list.

INModule.remove_constraint_eqn(eqn_number) Removes constraint equation eqn_number from
the list of constraint equations InVariable class if the equation is already in the list.

INModule.add_iteration_variable(var_number) Adds iteration variable var_number to the list
of iteration variables InVariable class if the variable is not already in the list.

INModule.remove_iteration_variable(var_number) Removes iteration variable var_number to
the list of iteration variables InVariable class if the variable is already in the list.

INDATClassic(filename="IN.DAT") Initialises an IN.DAT class which can be given a different
filename. This class is used for an IN.DAT with a module structure.

Chapter 6 Utility Programs 105

INDATClassic.read_in_dat() Reads an IN.DAT file with modular structure.

INDATClassic.write_in_dat(filename="new_IN.DAT") Writes a new IN.DAT with modular
structure.

INDATNew.read_in_dat() Reads an IN.DAT file without modular structure.

INDATNew.write_in_dat(filename="new_IN.DAT") Writes a new IN.DAT without modular
structure.

INDATNew.add_variable(var) Adds an INVariable object to the INDATNew class.

INDATNew.remove_variable(var_name) Removes an INVariable object from the INDATNew class.

INDATNew.add_constraint_eqn(eqn_number) Adds constraint equation eqn_number to the list of
constraint equations InVariable class if the equation is not already in the list.

INDATNew.remove_constraint_eqn(eqn_number) Removes constraint equation eqn_number from
the list of constraint equations InVariable class if the equation is already in the list.

INDATNew.add_iteration_variable(var_number) Adds iteration variable var_number to the list
of iteration variables InVariable class if the variable is not already in the list.

INDATNew.remove_iteration_variable(var_number) Removes iteration variable var_number to
the list of iteration variables InVariable class if the variable is already in the list.

clear_lines(lines) Removes comment only lines and replaces multiple empty lines with a single
empty line.

variable_type(var_name, var_value) Checks the type of an IN.DAT variable using
DICT_VAR_TYPE

fortran_python_scientific(var_value) Changes from FORTRAN double precision notation D to
Python’s e notation.

6.2.2 mfile.py

A set of Python classes to read and extract data from MFILE.DAT.

MFileVariable(var_name, var_description) Object to contain information for a single
MFILE.DAT variable.

MFileVariable.set_scan(scan_number, scan_value) Sets the variable value for scan number
scan_number

MFileVariable.get_scan(scan_number) Returns the variable value for scan number scan_number

MFileVariable.get_scans() Returns the variable value for all scans.

Chapter 6 Utility Programs 106

MFile(filename="MFILE.DAT") Object to contain information for all variables in an MFILE.DAT for
all scans.

MFile.search_keys(variable) Search for an MFILE variable in the data dictionary.

MFile.search_des(description) Search for an MFILE description in the data dictionary.

MFile.make_plot_dat(custom_keys, filename="make_plot_dat.out", file_format="row")

Create a PLOT.DAT equivalent for the variables in custom_keys in either row or column format.

MFile.get_num_scans() Returns the number of scans in the MFILE.DAT

read_mplot_conf(filename="make_plot_dat.conf") Reads the config file make_plot_dat.conf

and fills the list custom_keys with these variables.

write_mplot_conf(filename="make_plot_dat.conf") Writes a new make_plot_dat.conf adding
any additional variables that the user gave make_plot_dat.py at runtime.

6.2.3 process funcs.py

This library contains a collection of functions used by various PROCESS utilities.

get_neqns_itervars(wdir=’.’) Returns the number of equations and a list of variable names of
all iteration variables.

update_ixc_bounds(wdir=’.’) Updates the lower and upper bounds in DICT_IXC_BOUNDS from
IN.DAT.

get_variable_range(itervars, factor, wdir=’.’) Returns the lower and upper bounds of the
variable range for each iteration variable.

itervars: string list of all iteration variable names

factor: defines the variation range for non-f-values by setting them to value * factor and value
/ factor respectively while taking their PROCESS bounds into account.

For f-values the allowed range is equal to their PROCESS bounds.

check_logfile(logfile=’process.log’) Checks the log file of the PROCESS output. Stops if an
error occurred that needs to be fixed before rerunning.

process_stopped(logfile=’process.log’) Checks the PROCESS logfile whether it has prematurely
stopped.

process_warnings(logfile=’process.log’) Checks the PROCESS logfile whether any warnings
have occurred.

mfile_exists() Checks whether MFILE.DAT exists.

no_unfeasible_mfile(wdir=’.’) Returns the number of unfeasible points in a scan in MFILE.DAT.

no_unfeasible_outdat(wdir=’.’) Returns the number of unfeasible points in a scan in OUT.DAT.

Chapter 6 Utility Programs 107

vary_iteration_variables(itervars, lbs, ubs) Changes the iteration variables in IN.DAT

within given bounds.

itervars: string list of all iteration variable names

lbs: float list of lower bounds for variables

ubs: float list of upper bounds for variables

get_solution_from_mfile(neqns, nvars, wdir=’.’) Returns:-

• ifail: error value of PROCESS

• the objective functions

• the square root of the sum of the squares of the constraints

• a list of the final iteration variable values

• a list of the final constraint residue values

• If the run was a scan, the values of the last scan point will be returned.

get_solution_from_outdat(neqns, nvars) Returns:-

• ifail: error value of PROCESS

• the objective functions

• the square root of the sum of the squares of the constraints

• a list of the final iteration variable values

• a list of the final constraint residue values

• If the run was a scan, the values of the last scan point will be returned.

6.2.4 process config.py

A collection of Python classes for configuration files used by various PROCESS utilities, e.g.
run process.py or test process.py. It contains a base class ProcessConfig and two derived classes
RunProcessConfig and TestProcessConfig.

ProcessConfig() Object that contains the configuration parameters for PROCESS runs.

filename : Configuration file name

wdir : Working directory

or_in_dat : Original IN.DAT file

process : PROCESS binary

niter : (Maximum) number of iterations

u_seed : User specified seed value for the random number generator

factor : Multiplication factor adjusting the range in which the original iteration variables should
be varied

comment : Additional comment to be written into README.txt

ProcessConfig.echo_base() Echos the attributes of the base class to standard output.

ProcessConfig.echo() Echos the values of the current class to standard output.

Chapter 6 Utility Programs 108

ProcessConfig.prepare_wdir() Prepares the work directory for the run.

ProcessConfig.create_readme(directory=’.’) Creates a file called README.txt containing
ProcessConfig.comment.

ProcessConfig.modify_in_dat() Modifies the original IN.DAT file.

ProcessConfig.setup() Sets up the program for running.

ProcessConfig.run_process() Runs PROCESS binary.

ProcessConfig.get_comment() Gets the comment line from the configuration file.

ProcessConfig.get_attribute(attributename) Gets a class attribute from the configuration file.

ProcessConfig.set_base_attributes() Sets the attributes of the base class.

TestProcessConfig(filename=’test_process.conf’) Object that contains the configuration
parameter of the test_process.py program.

ioptimz : sets ioptimz (optimisation solver) in IN.DAT.

epsvmc : sets epsvmc (VMCON error tolerance) in IN.DAT.

epsfcn : sets epsfcn (finite diff. steplength) in IN.DAT.

minmax : sets minmax (figure of merit switch) in IN.DAT.

TestProcessConfig.echo() Echos the values of the current class to std out.

TestProcessConfig.modify_in_dat() Modifies IN.DAT using the configuration parameters.

RunProcessConfig(filename=’run_process.conf’) Configuration parameters of the
run_process.py program.

no_allowed_unfeasible : The number of allowed unfeasible points in a sweep

create_itervar_diff : Boolean to indicate the creation of a summary file of the iteration
variable values at each stage

add_ixc : List of iteration variables to be added to IN.DAT.

del_ixc : List of iteration variables to be deleted from IN.DAT.

add_icc : List of constrained equations to be added to IN.DAT.

del_icc : List of constrained equations to be deleted from IN.DAT.

dictvar : Dictionary mapping variable name to new value (replaces old or gets appended)

del_var : List of variables to be deleted from IN.DAT.

RunProcessConfig.get_attribute_csv_list(attributename) Get a class attribute list from the
configuration file; expects comma separated values.

RunProcessConfig.set_del_var() Sets the RunProcessConfig.del_var attribute from the config
file.

Chapter 6 Utility Programs 109

RunProcessConfig.set_dictvar() Sets the RunProcessConfig.dictvar attribute from config file.

RunProcessConfig.echo() Echos the values of the current class.

RunProcessConfig.modify_in_dat() Modifies IN.DAT using the configuration parameters.

RunProcessConfig.modify_vars() Modifies IN.DAT by adding, deleting and modifiying variables.

RunProcessConfig.modify_ixc() Modifies the array of iteration variables in IN.DAT.

RunProcessConfig.modify_icc() Modifies the array of constraint equations in IN.DAT.

6.2.5 process dicts.py

A collection of dictionaries and lists used by various PROCESS utilities.

IFAIL_SUCCESS This is the PROCESS error code of a successful run.

PARAMETER_DEFAULTS Default values for making a PLOT.DAT file from MFILE.DAT.

DICT_VAR_TYPE Maps the PROCESS variable name to its value type. The value type can be one of
int_array, int_variable, real_array or real_variable.

DICT_IXC_SIMPLE Maps the string number of the iteration variable to its variable name.

DICT_IXC_FULL Maps the string number of the iteration variable to a dictionary that contains the
variable name under ’name’, the default lower variable bound (float) under ’lb’ and the default
upper variable bound (float) under ’ub’.

DICT_IXC_BOUNDS Maps each iteration variable name to a dictionary that contains the default lower
variable bound (float) under ’lb’ and the default upper variable bound (float) under ’ub’.

NON_F_VALUES List of iteration variable names that start with an f, but are not f-values.

DICT_NSWEEP2IXC Maps the sweep variable number nsweep to the respective iteration variable
number, if applicable.

DICT_IX2NSWEEPC Maps the iteration variable number to the respective sweep variable number
nsweep, if applicable.

DICT_TF_TYPE Maps the PROCESS TF coil type number to its type.

DICT_OPTIMISATION_VARS Maps each figure of merit number to its description.

DICT_IXC_DEFAULT Maps each iteration variable name to its default value.

Add new stuff used by GUI etc.

6.2.6 a to b config.py

To do...

Chapter 6 Utility Programs 110

6.2.7 proc plot func.py

A collection of functions and lists used by plot proc.py.

RADIAL_BUILD A list of radial build variables.

VERTICAL_BUILD A list of vertical build variables.

FILL_COLS A list of plotting colours

For all of the functions below the arguments are:

axis : Matplotlib axis object to plot to

mfile data : MFILE data object MFile

scan : Scan number to plot

plot_plasma(axis, mfile_data,scan) Function to plot plasma

poloidal_cross_section(axis, mfile_data, scan) Function to plot machine build

plot_tf_coils(axis, mfile_data, scan) Function to plot the TF coils

plot_pf_coils(axis, mfile_data, scan) Function to plot the PF coils

plot_geometry_info(axis, mfile_data, scan) Function to plot the geometry info block

plot_physics_info(axis, mfile_data, scan) Function to plot the physics info block

plot_magnetics_info(axis, mfile_data, scan) Function to plot the magnetics info block

plot_power_info(axis, mfile_data, scan) Function to plot the power info block

plot_current_drive_info(axis, mfile_data, scan) Function to plot the current drive info block

plot_geometry_info(axis, mfile_data, scan) Function to plot the geometry info block

6.2.8 diagnose funcs.py

A collection of functions used by diagnose process.py.

plot_normalised_ixc(mfilename=’MFILE.DAT’) Plots the normalised values of the iteration
variables of a given MFILE.DAT.

plot_normalised_icc_res(mfilename=’MFILE.DAT’) Plots the normalised values of the costraint
residuals of a given MFILE.DAT.

6.3 User Interface

The user interface is still being developed, but currently allows for viewing and editing of IN.DAT files
in a web browser. It can be found in the utilities/gui directory. See 4.2 for details.

Chapter 7

Code Management Tools

This chapter will be of interest to people involved in the continuing maintenance of the PROCESS source
code. As stated elsewhere, the source code is maintained by CCFE, and resides in a Git repository
on the CCFE servers.

7.1 The Makefile

In addition to its normal role for compilation, the makefile (named Makefile) includes a number of
utility functions that perform tasks such as automatic generation of the code documentation, and the
creation of a tar file containing the entire source code, its documentation files, and the input and
output files. This has proved to be of great benefit in keeping all of the data from a given run together
for archival purposes.

7.1.1 Compilation

Compilation is trivially performed using the makefile. Currently, the available options are (type the
following on the command line):

make ARCH=FUN CCFE Fusion Unix Network (Intel Fortran ifort compiler)
make ARCH=GFORT GNU Fortran compiler (gfortran; N.B. only versions 4.6.3 or above)
make ARCH=JAC JET Analysis Cluster (pgf95 compiler)

The Intel Fortran compiler is the default option, so typing simply make will have the same effect as
typing make ARCH=FUN.

The code is almost trivial to port to new architectures, by adding extra stanzas to the makefile as
required.

To force a full recompilation, type make clean. N.B. This will remove (without prompting) all
“backup” files (*~) as well as certain other files from the working directory.

Extra run-time diagnostics (array-bound checking, etc.) is turned on by default at present; the code
is sufficiently quick to run that the performance penalty is barely noticeable. However, this can be
turned off (beware. . . results can change!), by adding DEBUG=NO to the relevant command above, i.e.
type make ARCH=... DEBUG=NO. N.B. there must be no spaces either side of the = characters in any
of the above commands.

111

Chapter 7 Code Management Tools 112

7.1.2 Archiving utilities

The makefile can be used in a number of ways to pack the various file sets together into a single
compressed tar file, for ease of portability and archiving.

• make tar: Typing this command produces a file process.tar.gz that contains all of the source
files, utility programs and documentation files necessary to run the program from scratch on a
new machine or in a new directory. (Note that the input files IN.DAT and device.dat are not
included.) This is useful for transferring new copies of source files, etc. into an existing directory
already containing a previous PROCESS run, as the pre-existing customised input files will not
be overwritten. To extract the individual files again, copy the file to the destination working
directory and type tar zxvf process.tar.gz

• make archive: Typing this command produces a file process run.tar.gz containing the
working directory’s input and output files (IN.DAT, OUT.DAT, PLOT.DAT, MFILE.DAT and
device.dat (which must exist to avoid an error message; see Section B.0.1), together with all of
the source files, utility programs and documentation files. These files together comprise the full
set that define a given run, and so the file produced by this command is suitable for long-term
storage for archival purposes. To extract the contents, type tar zxvf process_run.tar.gz

Note that each of the above commands will overwrite the given named tar file if one already exists in
the working directory.

7.1.3 Code documentation

The makefile can also be used to produce source code documentation, as described in the next section.

7.2 Automatic Documentation

The PROCESS source code is self-documenting to a degree, using an included parser program (autodoc)
to generate html files for each subprogram from specially-formatted comment lines within the code.
It is the responsibility of the programmer to keep the autodoc comments within the source code
relevant, comprehensive and up-to-date! Use the examples in the code as a starting basis for new
routines; the output section corresponding to the various autodoc tags should be self-explanatory.
See also Section 5.1.

The following files are used:

autodoc.f90

adheader.src

adfooter.src

To create the (∼ 430) html files from the source code, type make html. Then, point your favourite
web browser to the file process.html or calling tree.html in the working directory. The variable
descriptor file vardes.html (see Section 2.2) is also produced at the same time (though it may be
helpful to modify the file manually afterwards to remove empty sections from it).

In addition, a full LATEX User Guide (this document!), contained within process.tex and the other
.tex files called from it, is rigorously maintained to ensure its continuing strict agreement with

Chapter 7 Code Management Tools 113

the evolving source code. To create an Adobe PDF file process.pdf from process.tex (and the
associated PostScript figures), type make guide.

Finally, to produce both the html files and the User Guide in one go, simply type make doc.

7.3 Code Updates and Release Procedure

This section describes the procedures that should be followed whenever new commits to the develop

or master branches of the PROCESS Git repository are to be made, and how new code releases are
performed. It is assumed that readers have a working knowledge of Git commands.

7.3.1 Initial access to the source code

To gain access to the PROCESS source code Git repository, you need to be given permission to do so
via the CCFE GitLab server.

1. Use a web browser to go to http://git.ccfe.ac.uk

2. Login using your normal CCFE computer login details.

3. Assuming this is successful, contact the GitLab PROCESS “Owner” (currently James Morris
james.morris2@cfe.ac.uk), who will add you to GitLab as a PROCESS “Developer”.

4. (If this is your first access to GitLab, you may have to set up SSH keys and a few other things;
follow the instructions on screen.)

5. Login to a Fusion Unix Network machine.

6. cd SomewhereAppropriate (you choose!)

7. git clone git@git.ccfe.ac.uk:process/process.git -b develop my develop This copies
the develop branch of the repository into a local folder my develop, which will be created if it
does not already exist.

8. cd my develop

9. git checkout develop

The sequence of commands above will provide you with a full copy of the develop branch of the
PROCESS source code, Python utilities and all the documentation files.

10. make all

This performs a full compilation and builds the executable, creates the User Guide, creates the
python dictionaries and produces all the web-based documentation.

7.3.2 Git workflow

The code management methodology is based on the so-called “gitflow” workflow. There are two main
branches:

• develop, which is the basis for all code development work, and changes are committed to it
frequently.

http://git.ccfe.ac.uk
https://www.atlassian.com/git/workflows#!workflow-gitflow

Chapter 7 Code Management Tools 114

• master, which contains official “release” versions of PROCESS, and is updated on a roughly three-
monthly timescale.

Development work on new models should use separate branches, named e.g. dev mynewmodel, split
from the develop branch. It is a very good idea to merge the develop branch into dev mynewmodel

frequently during the course of the work, so that changes to the main branch are transferred to the
new model’s files with minimal effort.

Once the new model has been finished and tested successfully (complete with full documentation —
see Section 5.1), the branch should be merged back into the develop branch.

7.3.2.1 Branching from develop

The following commands create a new branch in which to work on a new model. We assume that you
are already in the process directory created above (Section 7.3.1).

1. git checkout develop (just to ensure that this is the branch from which you will be branching)

2. git branch dev mynewmodel

3. git checkout dev mynewmodel

4. git push origin HEAD (updates the central GitLab repository)

7.3.2.2 Working on a new model

Edit your local copies of the files as necessary. Whenever you want to save the changes back to the
repository (it is prudent to do this at the end of each working day, as well as when the changes are
complete, the code compiles and all test runs are successful!), use the following commands:

1. git status (this will show a list of modified files)

2. git add changedfile1 changedfile2 ...

(This ‘stages’ the modified files marking them as ready for committing).
git commit

Alternatively, just use
git commit -a

This commits all modified tracked files.

3. An editor window will open; add a line summarising the changes you have made, save and close
the window. This will initiate the commit to your local copy of the repository.

4. git push

Copies the changes you have made locally to the version in the central GitLab repository. This
uses a merging process, but if no-one else has changed your branch then the central version will
simply become a copy of your local version.

7.3.2.3 Merging develop into working branch

It is a good idea to periodically merge the develop branch into the branch in which you are working,
to ensure that any changes made in develop are included in your working branch.

Chapter 7 Code Management Tools 115

1. Firstly, make sure you have committed your latest changes into the central GitLab repository
as described in the previous section. Set the directory containing the working branch as your
current directory.

2. git pull.
Merges the version in the central repository into the local branch by copying over any changes
that have been made in the version stored centrally.

3. git checkout develop

This switches the ”current branch” to develop.

4. git pull

Updates the current branch of the local repository to the same branch on the central repository.

5. git checkout dev mynewmodel

This switches the ”current branch” to dev mynewmodel.

6. git merge develop

Merges develop into the dev mynewmodel branch.

7. Look for messages on the screen containing the word ”conflict” indicating that some files cannot
be merged directly. This typically happens if the same (or very closely-spaced) lines have been
edited in both the develop and dev mynewmodel branches.

If any files are affected, they will be listed. Edit them and look for any lines containing =======.
Such lines separate the changes made in the two branches, as in:

<<<<<<< HEAD

This line was edited in dev_mynewmodel branch

=======

This line was edited in develop branch

>>>>>>> develop

Resolve the conflict(s) as necessary. Then type git add file1 file2 ..., where file1 etc.
are the names of the files you removed conflicts from. Finally type git commit and edit the
change log file.

8. git push

Updates the central repository.

7.3.2.4 Merging working branch back into develop

Once the work on a model has been completed, fully tested and documented, the working branch
should be merged back into the develop branch. This is done almost exactly as in the previous
section, but there are a few crucial differences:

1. Firstly, make sure you have committed your latest changes to the working branch into the central
GitLab repository.

2. git pull

Merges the version in the central repository into the local branch by copying over any changes
that have been made in the version stored centrally.

3. git checkout dev mynewmodel

Chapter 7 Code Management Tools 116

4. git checkout develop

5. git merge dev mynewmodel

6. Look for any conflicts and resolve them as described in the previous section.

7. git push

7.3.2.5 Committing changes to develop

Whenever a commit to the develop branch is to be made, the following procedure should be followed.
Ensure all documentation is up to date (see Section 5.1).

1. In routine inform of file process.f90, change the definition of progver by incrementing the
revision number by one to XYZ (for instance) and the Release Date. It is important to keep
exactly the same format.

2. Add a brief comment to the bottom of source file process.f90 describing the changes made
since the last commit in the same branch. Start the line with ! GIT XYZ: , following the
existing examples.

3. If any of the User Guide .tex files have been modified, edit the definition of \version in
process.tex by changing the Revision (to XYZ) and the date.

4. If you have changed any ”use” statements in the code, or any compilation dependencies in the
Makefile, run
make clean

5. make all

This ensures that all the code and documentation compiles successfully.

6. Run the input file(s) in the tests folder to ensure PROCESS runs correctly.

7. Close all open editor windows. The commit will not work otherwise.

8. git commit -a

This commits all modified tracked files.

Alternatively, you can this in two steps:
git add process.f90 process.tex changedfile1 changedfile2 ...

(This ‘stages’ the modified files marking them as ready for committing).
git commit

9. An editor window will open; add a line summarising the changes you have made. Use a format
like this:

rXYZ A summary of the changes made

Further details. Changes due to Git issues can be described like this:

#270 Description

#273 Description

Save and close the window. This will initiate the commit to your local copy of the repository.

10. git tag -a rXYZ -m ‘Revision XYZ’

Chapter 7 Code Management Tools 117

11. git push

12. git push origin rXYZ

The instructions given in Section 7.3.3 should now be followed to make the new develop release
available to all users.

7.3.2.6 Merging develop into master

(to follow)

7.3.3 Full code rebuild

The standard PROCESS executables and the corresponding documentation available to all users are
stored in the functional account called PROCESS on the CCFE Fusion Unix Network. Whenever the
master or develop branches are updated a full rebuild of the standard executables and documentation
should be performed. This is done as follows:

1. Ensure that all key users have been informed (using the commit message described above or
directly).

2. alter PROCESS (this changes your current login to that of the PROCESS user; only registered
individuals are able to do this)

3. cd develop (or cd master, as appropriate to the branch to be rebuilt)

4. git pull

Updates the version stored in this folder to the version stored centrally.

5. make all This is essential because the Git repository does not include any of the files generated
in the compilation process.

6. exit (to return to your own username again)

The make all step performs the rebuild of the process.exe executable file, updates the User Guide
and all the html files, and recreates the Python dictionaries as required by the Python utilities.

Chapter 8

Acknowledgements & Bibliography

The authors would like to thank the following people for many useful and revealing discussions during
their work on PROCESS:

— John D. Galambos, Paul C. Shipe and Y-K. Martin Peng of Oak Ridge National Laboratory,
USA;

— Ian Cook, Robin Forrest, Winston Han, Roger Hancox and Panos Karditsas, all formerly of
Fusion Physics Department, UKAEA Fusion;

— John Hicks, formerly of Engineering Department, UKAEA Fusion;

— Chris Gardner, formerly of Microwave and Interpretation Department, UKAEA Fusion;

— Tim Hender of CCFE, and all the co-authors of reference [17];

— David Ward, Richard Kemp, Hanni Lux, James Morris and Neill Taylor, all of CCFE, and the
members of the PROCESS User Group throughout Europe.

This work was funded by the RCUK Energy Programme under grant EP/I501045 and the European
Communities under the contract of Association between EURATOM and CCFE. The views and
opinions expressed herein do not necessarily reflect those of the European Commission. Part of this
work was carried out within the framework of the European Fusion Development Agreement.

118

Bibliography

[1] R. L. Reid et al., “ETR/ITER Systems Code”, Oak Ridge Report ORNL/FEDC-87/7 (1988)

[2] J. D. Galambos, “STAR Code : Spherical Tokamak Analysis and Reactor Code”, Unpublished
internal Oak Ridge document. A copy exists in the PROCESS Project Work File [36].

[3] J. J. More, B. S. Garbow and E. Hillstrom, “User Guide for MINPAC-1”, Argonne National
Laboratory Report ANL-80-74 (1980)

[4] M. J. D. Powell, “A Hybrid Method for Non-linear Algebraic Equations”, Numerical Methods
for Non-linear Algebraic Equations, ed. P. Rabinowitz, Prentice-Hall

[5] R. L. Crane, K. E. Hillstrom and M. Minkoff, “Solution of the General Nonlinear Programming
Problem with Subroutine VMCON”, Argonne National Laboratory Report ANL-80-64 (1980)

[6] M. J. D. Powell, “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations”,
Lecture Notes in Mathematics, vol. 630, pp.144–157, Springer-Verlag, Berlin, 1978

[7] M. Avriel, “Nonlinear Programming: Analysis and Methods”, Dover Publications, Inc., Mineola,
NY, 2003

[8] P. J. Knight, “Surface Area and Volume Calculations for Toroidal Shells”, CCFE internal note
T&M/PKNIGHT/PROCESS/009, May 2013

[9] H. Zohm et al, “On the Physics Guidelines for a Tokamak DEMO”, FTP/3-3, Proc. IAEA
Fusion Energy Conference, October 2012, San Diego

[10] T. Hartmann and H. Zohm, “Towards a ‘Physics Design Guidelines for a DEMO Tokamak’
Document”, EFDA Report, March 2012
(Activity 3 Physics Design Guidelines 2L8QVN v1 0(1).pdf)

[11] Y. Sakamoto, “Recent progress in vertical stability analysis in JA”, Task meeting EU-JA#16,
Fusion for Energy, Garching, 24–25 June 2014

[12] P. J. Knight, CCFE Logbook, F/MI/PJK/LOGBOOK14, pp.41–43

[13] H.-S. Bosch and G. M. Hale, “Improved Formulas for Fusion Cross-sections and Thermal
Reactivities”, Nuclear Fusion 32 (1992) 611

[14] J. Johner, “Helios: A Zero-Dimensional Tool for Next Step and Reactor Studies”, Fusion
Science and Technology 59 (2011) 308–349

[15] M. Bernert, “Analysis of the H-mode density limit in the ASDEX Upgrade tokamak using
bolometry”, PhD Thesis LMU Mnchen (http://edoc.ub.uni-muenchen.de/16262/) and M.
Bernert et al. Plasma Phys. Control. Fus. 57 (2015) 014038, doi:10.1088/0741-3335/57/1/014038

119

Chapter 8 Acknowledgements & Bibliography 120

[16] N. A. Uckan and ITER Physics Group, “ITER Physics Design Guidelines: 1989”, ITER
Documentation Series, No. 10, IAEA/ITER/DS/10 (1990)

[17] T. C. Hender, M. K. Bevir, M. Cox, R. J. Hastie, P. J. Knight, C. N. Lashmore-Davies, B.
Lloyd, G. P. Maddison, A. W. Morris, M. R. O’Brien, M. F. Turner and H. R. Wilson, “Physics
Assessment for the European Reactor Study”, AEA Fusion Report AEA FUS 172 (1992)

[18] D. J. Ward, “PROCESS Fast Alpha Pressure”, Work File Note
F/PL/PJK/PROCESS/CODE/050

[19] M. Kovari, R. Kemp, H. Lux, P. Knight, J. Morris, D. J. Ward “PROCESS: a systems code for
fusion power plants - Part 1: Physics”, Fusion Engineering and Design 89 (2014) 30543069
(2014), http://dx.doi.org/10.1016/j.fusengdes.2014.09.018

[20] M. Kovari et al., “PROCESS: a systems code for fusion power plants - Part 2: Engineering”, in
preparation (2015)

[21] M. Kovari et al., “The cost of a fusion power plant: extrapolation from ITER”, in preparation
(2015)

[22] H. Lux et al., “Impurity radiation in DEMO”, in preparation (2014)

[23] Albajar, Nuclear Fusion 41 (2001) 665

[24] Fidone, Giruzzi and Granata, Nuclear Fusion 41 (2001) 1755

[25] N. A. Uckan, Fusion Technology 14 (1988) 299

[26] W. M. Nevins et al., “Summary Report: ITER Specialists’ Meeting on Heating and Current
Drive”, ITER-TN-PH-8-4, 13–17 June 1988, Garching, FRG

[27] H. R. Wilson, Nuclear Fusion 32 (1992) 257

[28] O. Sauter, C. Angioni and Y. R. Lin-Liu, Physics of Plasmas 6 (1999) 2834

[29] O. Sauter, C. Angioni and Y. R. Lin-Liu, Physics of Plasmas 9 (2002) 5140

[30] N. A. Uckan et al., Fusion Technology 13 (1988) 411

[31] A. Li Puma, F. Franza and L. V. Boccaccini, “WP12-SYS01-T02 - Model Improvements
(Blanket Model)”, EFDA D 2LKMCT, v1.0, EFDA Power Plant Physics & Technology,
February 2013

[32] C. Harrington, “Development and Implementation of Improved Balance of Plant Models for
PROCESS”, CCFE C5.M15 Milestone Report, August 2014 (copy stored as CCFE internal note
T&M/PKNIGHT/PROCESS/027)

[33] L. Bottura, “Jc(B, T, ǫ) Parameterizations for the ITER Nb3Sn Production”, ITER Document
2MMF7J (2008), https://user.iter.org/?uid=2MMF7J&action=get document

[34] J. Myall, ORNL internal note, 28th August 1987; scanned copy available in
Myall 1987 TF stress calc.pdf

[35] J. Morris, “PROCESS Superconducting Toroidal Field Coil Model”, CCFE internal note, 1st
May 2014

[36] P. J. Knight, “PROCESS Reactor Systems Code”, AEA Fusion Project Work File,
F/RS/CIRE5523/PWF (1992)

Chapter 8 Acknowledgements & Bibliography 121

[37] Y-K. M. Peng and J. B. Hicks, “Engineering Feasibility of Tight Aspect Ratio Tokamak
(Spherical Torus) Reactors”, AEA Fusion Report AEA FUS 64 (1990)

[38] “Pulsed Fusion Reactor Study”, AEA Fusion Report AEA FUS 205 (1992)

[39] F. Schauer, K. Egorov and V. Bykov, “HELIAS 5-B magnet system structure and maintenance
concept”, Fusion Engineering and Design 88 (2013) 1619–1622

[40] F. Warmer, “Stellarator Plasma Geometry model for the systems code PROCESS”, IPP
Greifswald, Germany, internal note, 19/06/2013

[41] F. Warmer, “Stellarator Divertor model for the systems code PROCESS”, IPP Greifswald,
Germany, internal note, 21/06/2013

[42] F. Warmer and F. Schauer, “Stellarator Coil model for the systems code PROCESS”, IPP
Greifswald, Germany, internal note, 07/10/2013

[43] VMEC MHD force balance code for toroidal domains,
http://vmecwiki.pppl.wikispaces.net/VMEC

[44] J. Geiger, “Darstellung von ineinandergeschachtelten toroidal geschlossenen Flächen mit
Fourierkoeffizienten” “Representation of nested, closed surfaces with Fourier coefficients” IPP
Greifswald, Germany, internal document, 06/07/2010

[45] J. Nührenberg et al., Plasma Physics and Controlled Fusion, 35 (1993) B115

[46] S. Sudo, Y. Takeiri, H. Zushi et al., Nuclear Fusion, 30 (1990) 11

[47] R. J. Goldston, H. Biglari, G. W. Hammett et al., Bull. Am. Phys. Society, 34 (1989) 1964

[48] K. Lackner and N. A. O. Gottardi, Nuclear Fusion, 30 (1990) 767

[49] U. Stroth et al., Nuclear Fusion, 36 (1996) 1063

[50] H. Yamada et al., Nuclear Fusion, 45 (2005) 1684

[51] F. Warmer, “Stellarator Modular Coil model for the systems code PROCESS”, IPP Greifswald,
Germany, internal note, 31/07/2013

[52] “The TITAN Reversed Field Pinch Fusion Reactor Study, Scoping Phase Report” , UCLA
Report UCLA-PPG-1100, January 1987

[53] “The TITAN Reversed Field Pinch Fusion Reactor Study, Final Report”, UCLA Report
UCLA-PPG-1200, 1990

[54] P. J. Knight, “PROCESS 3009: Incorporation of Inertial Fusion Energy Model”, Work File
Note F/MI/PJK/PROCESS/CODE/032

[55] Bourque et al., “Overview of the OSIRIS IFE Reactor Conceptual Design”, Fusion Technology
21 (1992) 1465

[56] Meier and Bieri, “Economic Modeling and Parametric Studies for OSIRIS — a HIB-Driven IFE
Power Plant”, Fusion Technology 21 (1992) 1547

[57] Ghose et al., “BOP Designs for OSIRIS and SOMBRERO IFE Reactor Plants”, Fusion
Technology 21 (1992) 1501

Chapter 8 Acknowledgements & Bibliography 122

[58] Sviatoslavsky et al., “A KrF Laser Driven Inertial Fusion Reactor SOMBRERO”, Fusion
Technology 21 (1992) 1470

[59] Meier and Bieri, “Economic Modeling and Parametric Studies for SOMBRERO — a
Laser-Driven IFE Power Plant”, Fusion Technology 21 (1992) 1552

[60] Moir et al., “HYLIFE-II: A Molten-Salt Inertial Fusion Energy Power Plant Design — Final
Report”, Fusion Technology 25 (1994) 5

[61] Moir, “HYLIFE-II Inertial Fusion Energy Power Plant Design”, Fusion Technology 21 (1992)
1475

[62] Hoffman and Lee, “Performance and Cost of the HYLIFE-II Balance of Plant”, Fusion
Technology 21 (1992) 1475

[63] P. J. Knight, “PROCESS IFE Build Details”, F/MI/PJK/LOGBOOK12, pp. 52, 53, 56, 57

[64] Bieri and Meier, “Heavy-Ion Driver Parametric Studies and Choice of a Base 5 MJ Driver
Design”, Fusion Technology 21 (1992) 1557

[65] N. P. Taylor, R. A. Forrest, P. J. Knight and L. J. Baker, “Safety and Environmental Modelling
in the PROCESS Code”, Strategic Studies Note 94/14 (1994)

[66] R. L. Reid and Y-K. M. Peng, “Potential Minimum Cost of Electricity of Superconducting Coil
Tokamak Power Reactors”, Proceedings of 13th IEEE Symposium on Fusion Engineering,
Knoxville, Tennessee, October 1989, p. 258

[67] J. Sheffield et al., “Cost Assessment of a Generic Magnetic Fusion Reactor”, Fusion Technology
9 (1986) 199

[68] S. Thompson, “Systems Code Cost Accounting”, memo FEDC-M-88-SE,-004 (1988)

[69] J. D. Galambos, L. J. Perkins, S. W. Haney and J. Mandrekas, Nuclear Fusion, 35 (1995) 551

[70] J. P. Holdren et al., “Report of the Senior Committee on Environmental Safety and Economic
Aspects of Magnetic Fusion Energy”, Fusion Technology, 13 (1988) 7

[71] P. J. Knight, “PROCESS 3020: Plant Availability Model”, Work File Note
F/PL/PJK/PROCESS/CODE/043

[72] Git version control system http://git-scm.com/

[73] R. Kemp, H. Lux, J. Morris, M. Kovari, P. Knight et al., “Report on the Systems Code
Activities by CCFE in 2014”, Eurofusion Report EFDA D 2M94N2 v1.0 - PMI-7.1-2, 2014

[74] K. Schittkowski, “Nonlinear Programming Codes”, Springer, Berlin, 1980

[75] D. G. Luenberger and Yinyu Ye, “Linear and Nonlinear Programming”, International Series in
Operations Research and Management Science, 3rd Edition, Springer Science and Business
Media LCC, 2008

[76] M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables
without calculating derivatives”, Computer Journal, 7 No. 2 (1964) 155–162

[77] S.-P. Han, “A Globally Convergent Method for Nonlinear Programming”, Department for
Computer Science, Cornell University, Report 75-257 (1975)

http://git-scm.com/
http://git-scm.com/

Chapter 8 Acknowledgements & Bibliography 123

[78] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, “Nonlinear Programming: Theory and
Algorithms”, John Wiley & Sons, Inc., New York, 1993

[79] R. Fletcher, “A General Quadratic Programming Algorithm”, Atomic Energy Research
Establishment, Report T.P. 401, March 1970

[80] R. Fletcher, “The calculation of feasible points for linearly constrained optimisation problems”,
Atomic Energy Research Establishment, Report R.6354, April 1970

[81] R. Fletcher, “A FORTRAN subroutine for general quadratic programming”, Atomic Energy
Research Establishment, Report R.6370, June 1970

[82] M. J. D. Powell, “The convergence of variable metric methods for nonlinearly constrained
optimisation calculations”, presented at Nonlinear Programming Symposium 3, Madison,
Wisconsin, 1977

[83] “Report on the Systems Code Activities by CCFE in 2014”, R. Kemp, H. Lux, J. Morris, M.
Kovari, P. Knight et al.,
EuroFusion Report EFDA D 2M94N2 v1.0 - PMI-7.1-2, December 2014
https://idm.euro-fusion.org/?uid=2M94N2\&version=v1.0\&action=get_document

https://idm.euro-fusion.org/?uid=2M94N2\&version=v1.0\&action=get_document
https://idm.euro-fusion.org/?uid=2M94N2\&version=v1.0\&action=get_document

Appendix A

The Optimisation Solver Explained

To give the user a better understanding of the optimisation solver implemented in PROCESS and the
interpretation of its results, we give a short introduction into the mathematical background for solving
these type of problems as well as the specific algorithm used.

In section A.1, the general nonlinear programming problem is defined, which is the mathematical
description of our problem. This problem is typically formulated using Lagrange multipliers (c.f.
A.2) and is solved numerically most efficiently using sequential quadratic programming (c.f. A.3).
The Fortran subroutine that is used to implement such an optimisation solver in PROCESS is called
VMCON (c.f. A.4), which iterates between solving a local quadratic subproblem (c.f. A.5) and a one
dimensional line search (c.f. A.6). As the method uses a quasi-Newtonian approach the Hessian
matrix is approximated by a variant of the Broyden-Fletcher-Goldfarb-Shanno update (A.7). Section
A.8 summarises the symbol convention used in this chapter.

A.1 The General Nonlinear Programming Problem

Mathematically the general nonlinear programming problem or nonlinear constrained optimisation
problem is defined as

minimise f(x), (A.1a)

subject to ci(x) = 0, i = 1, . . . , k, (A.1b)

and ci(x) ≥ 0, i = k + 1, . . . , m, (A.1c)

where both the objective function1 f(x) and the constraints ci(x) are nonlinear functions of the
n-dimensional vector of variables x with bounds x ∈ Ω. In this context, all x ∈ Ω that fulfill
the constraints ci(x) are called feasible. They describe the allowed space in which we are trying
to optimise the objective function f(x). Note that any maximisation problem can be written as a
minimisation by using fnew(x) = −f(x) and that any equality constraint c(x) = a can be rewritten
as cnew(x) = c(x) − a = 0. Any inequality constraint can therefore be rearranged analogously to fit
the form described in eq. A.1c.

124

Appendix A The Optimisation Solver Explained 125

Figure A.1: Illustration of Lagrange Multiplier Method (credit Wikipedia) showing two contour lines
of the objective function f(x, y) = di (dark blue dashed lines) and the nonlinear constraint g(x, y) = c
(red solid line) as well as their gradients (blue and red arrows) at various positions including the
constrained optimum (light blue and orange arrows).

Appendix A The Optimisation Solver Explained 126

A.2 The Lagrange Method

The general nonlinear programming problem can be solved mathematically using Lagrange’s method.
It assumes that the constraints cannot be used to explicitly reduce the parameter space of the iteration
variables - as it is typically the case for non-linear constraints and objective functions - and is therefore
a powerful method applicable to a general class of problems.

If we assume for simplicity that we have a 2D problem with only one equality constraint c(x, y) = 0,
we know that we only need to search for the optimum along that constraint. At the optimum, the
value of the objective function will then be stationary, i.e. it does not locally increase or decrease
along the constraint. As the gradient of a function is perpedicular to its contour lines of f(x, y) = d,
this is equivalent to saying that the gradient of the objective function at that point is parallel to the
gradient of the constraints:

∇f(x, y) = −λ∇c(x, y), (A.2)

where the factor λ is necessary as only the direction, but not the magnitude nor the sign of the
gradients need to be equal. This is also illustrated in Figure A.1.

When expanding the method to several equality and inequality constraints we can make use of the
Lagrange function. For the nonlinear programming problem described by A.1 it is given by

L(x, λ) = f(x) −

m
∑

i=1

λici(x), (A.3)

with the corresponding Lagrangian multipliers λi. It allows us to formulate the first order necessary
conditions for a constrained optimum x∗ with corresponding Lagrange multipliers λ∗, the Karush-
Kuhn-Tucker (KKT) conditions,

∇xL(x∗, λ∗) = ∇xf(x∗) −
m

∑

i=1

λi∇xci(x
∗) = 0, (A.4a)

λ∗

i ci(x
∗) = 0, i = 1, . . . , m, (A.4b)

ci(x
∗) = 0, i = 1, . . . , k, (A.4c)

λ∗

i ≥ 0, i = k + 1, . . . , m, (A.4d)

ci(x
∗) ≥ 0, i = k + 1, . . . , m. (A.4e)

Please note that by construction the Lagrange multipliers λ∗
i fulfilling the KKT conditions are

describing the derivative of the objective function with respect to the constraint equation df
dci

and
are therefore a measure of how much the objective function changes with respect to each constraint.

In the special case of a continuously differentiable convex objective function f(x) and equality
constraints as well as affine inequality constraints, these KKT conditions are also sufficient for a global
optimum. The PROCESS optimisation solver has been designed to converge on the KKT conditions,
but does not test whether these are sufficient for a global optimum. It is therefore crucial that the
user verifies that a global optimum has been found.

Furthermore, these conditions and therefore the solver, assume that both the objective function and
constraints are at least first order continuously partially differential, i.e. that their first order partial
derivatives are all continuous functions. This might not always be the case in PROCESS and is a
potential source of errors.

1Please note that what is called figure of merit in PROCESS is called objective function in the mathematical optimisation
context. Hence, both names are used equivalently in this document.

Appendix A The Optimisation Solver Explained 127

A.3 Sequential Quadratic Programming (SQP)

Based on the Lagrange method, sequential (also successive or recursive) quadratic programming is
the most efficient method to numerically solve constrained nonlinear optimisation problems [74]. It
combines a simple solver for a quadratic optimisation problem with linear constraints that determines
a search direction δ with a line search to find an optimum along that search direction. It is a type of
the more general feasible direction methods which is itself a type of primal method that solve nonlinear
programming problems in the n − m dimensional feasible subspace [75].

A.4 VMCON

The optimisation solver implemented in PROCESS is the Fortran routine VMCON [5]. It is a modified
version of the vf02ad routine from the Harwell Software Library2 and implements a SQP method
originally suggested by Powell3 [6] based on work by Han [77]. As stated before VMCON is designed
to converge on a solution of the necessary KKT conditions A.4, but does not check the sufficient
conditions. Its convergence criterion is therefore given by

∣

∣∇xf(xj−1)T · δj
∣

∣ +
m

∑

i=1

∣

∣

∣
λj

i ci(x
j−1)

∣

∣

∣
< epsvmc (A.5)

where epsvmc is a user specified error tolerance, δj is the vector in direction of the next line search (c.f.
section A.6) and j is the counter of the sequential quadratic programming iteration. Hence, the first
part estimates the predicted improvement due to the next line search and the second part measures
the error in the complimentary condition A.4b of the KKT conditions.

Figure A.2 describes the flow chart of the VMCON routine, while the various values of the return
parameter ifail4 are described and interpreted in Table A.1.

A.5 The Quadratic Subproblem (QSP)

Within sequential quadratic programming the complex nonlinear problem is broken down into solving
a sequence of local quadratic subproblems with linear constraints. This is based on the assumption
that locally the problem is well approximated by a second order Taylor expansion of the Lagrange
function. Hence, the local quadratic subproblem is described by

minimise Q(δ) = f(xj−1) + δT∇xf(xj−1) +
1

2
δT∇xxL(xj−1, λj−1)δ (A.6a)

subject to δT∇xci(x
j−1) + ci(x

j−1) = 0, i = 1, . . . , k, (A.6b)

and δT∇xci(x
j−1) + ci(x

j−1) ≥ 0, i = k + 1, . . . , m, (A.6c)

where δ = x − xj−1, the index j − 1 indicates the parameter values of the previous iteration5 and
∇xxL(xj−1, λj−1) is the Hessian of the Lagrange function. The solution of the QSP δ describes the
change of the current iteration variable vector that minimises the local approximation of the problem.
To assure convergence even from bad starting points, it is not directly used to update the iteration

2www.hsl.rl.ac.uk
3This should not be confused with Powell’s algorithm [76] which solves a multidimensional unconstrained minimisation

problem without derivatives.
4Note, within the VMCON routine ifail is called info.
5Note j is called nqp in the VMCON routine.

Appendix A The Optimisation Solver Explained 128

SQP iteration

Line search

Setup:

• initialise B

• evaluate f , c,

∇xf , ∇xc

• j=0, nfev=1

Solve QSP,
j = j + 1

calculate λj ,
∇xL, µj , l = 1

test convergence

Evaluate Φ(f, c)

l == 1:

• calculate ∆

• set α = 1l >= 1:

• test

convergence

• calculate α

update xj ,
evaluate f ,
c, nfev +=
1, l += 1

evaluate f ,
c, ∇xf , ∇xc,
calculate ∇xL

BFGS update

ifail = 0

ifail = 5

ifail = 6

ifail = 1

ifail = 4

ifail = 3

adhoc fix

ifail

Figure A.2: This is the flow chart of the VMCON optimisation solver. The criteria for and the
interpretation of the successful (ifail = 1) and unsuccessful (ifail 6= 1) return parameters are
described in Table A.1.

Appendix A The Optimisation Solver Explained 129

ifail Description Meaning Recommendation

0 VMCON: Improper
input parameters

The input parameters to
the solver are wrong,
e.g. negative number of
iteration variables.

This needs to be fixed
on the developer side
and should only occur
in the test phase of new
modules.

1 VMCON: Normal
return

VMCON has found
a solution that fulfills
the necessary conditions
within the specified
error tolerances (c.f. eq.
A.5).

Test
whether the solution is
a global solution by
using different starting
parameters.

2 Too many function
calls

During the line search
VMCON has reached the
maximum
number of total function
calls (maxfev=100)

VMCON struggles to find
a solution. Retry with
different start
parameters.

3 Line
search required 10
functions calls

The results produced by
input objective
function/constraints
and their gradients are
inconsistent. This can
be due
to numerical noise in the
input functions.

The developer needs to
check the consistency
and numerical robust-
ness of the objective
function, constraints
and their derivatives.
Perhaps the accurracy
in numerical integra-
tions/differentiations
needs to be higher. As
a user, try changing
the iteration bounds or
adding other iteration
variables.

4 Uphill search
direction was
calculated

The quadratic
subproblem
has suggested a search
direction in which the
objective function only
increases.

This happens if an
inconsistency between
the objective function,
the constraints and
their respective
derivatives occurs (c.f.
ifail =3).

5 qpsub: No
feasible solution or
bad approximation
of Hessian

Either no optimum lies
within the space allowed
by the constraints and
variable bounds or the
identity matrix is not a
good
first approximation of
the Hessian.

As a user, add a new
iteration variable, as
developer, try using a
multiple of the identity
matrix as initial Hessian
instead.

6 qpsub:
Singular matrix in
quadratic
subproblem
or restriction by
artificial bounds

This is fairly
self-explanatory.

If this is meaningful,
widen the boundaries of
the iteration variables.

Table A.1: Summary of the description and meaning of the VMCON return parameters ifail.

Appendix A The Optimisation Solver Explained 130

variable vector, but describes the direction of the line search in which a 1d function is minimised using
a Newtonian method (c.f. section A.6). Being a second order approximation to the original problem,
it typically has a faster convergence that sequential linear programming (SLP) methods [78, chap.
10.4].

To allow the applicability of the solver to more general problems, Powell [6] substituted the Hessian
∇xxL(xj−1, λj−1) with a positive definite approximation B. This means that both the objective
function f(x) and the constraint equations ci(x) only have to be continuously differentiable instead
of twice continuously differentiable with respect to the iteration variable vector x. This makes the
method a Quasi-Newtonian method as opposed to true Newtonian methods. How this approximation
is initialised and updated is described in more detail in the section about the Broyden-Fletcher-
Goldfarb-Shanno update A.7.

To solve the QSP VMCON uses harwqp a modification of the the Harwell library routine VE02AD, which
in itself uses the subroutine harwfp/LA02AD to find a feasible point within the variable bounds and
linearised constraints. Both routines go back to a method by Fletcher [79, 80, 81]. The Lagrange
multipliers are also determined from results of the harwqp routine.

If the routine cannot find a feasible point it fails with ifail = 5 (c.f. Table A.1). As the routine is
only checking the local linear approximation of the constraints rather the full non-linear constraints,
there is a chance that a feasible point exists even though the routine fails with ifail = 5. In these
cases, it is possible that the first approximation of the Hessian has not been good and the algorithm
has, therefore, taken an inappropriately large step. Then using a multiple of the identity matrix will
improve convergence of the algorithm.

If a singular matrix is encountered with the QSP solver or the solution is restricted by the artificial
bounds, VMCON fails with ifail = 6. In this case it can be helpful to widen the boundaries of the
iteration variables.

A.6 The Line Search

The line search is an essential part of the SQP algorithm. As Powell [6] pointed out, it is necessary
to allow convergence from poor starting conditions. It uses the vector δ from the QSP to update
xj = xj−1 + αjδj where the step-length parameter αj > 0 is determined by the line search as the
parameter that minimises

Φ(α) = f(x) +
k

∑

i=1

µi |ci(x)| +
m

∑

i=k+1

µi |min(0, ci(x))| (A.7)

where the weights are defined as

µi =

{

|λ1
i | if j = 1,

max
(

|λj
i |, 1/2(µj−1

i + |λj
i |)

)

if j > 1
(A.8)

to assure maximally efficient convergence [77]. Note, that in this method locally inactive inequality
constraints (c.f. 2.5.2) are not having any effect. It should always be possible, to find a solution that
fulfills

Φ(α = 0) > Φ(αj), (A.9)

if
dΦ

dα

∣

∣

∣

∣

α=0

< 0. (A.10)

Appendix A The Optimisation Solver Explained 131

In case the derivative is positive (dflsa ≥ 0), an uphill search direction has been determined and the
code stops with ifail = 4. This typically only happens, if the objective function or constraints are
inconsistent with their own derivatives.

As the line search tries to determine the optimum of a one dimensional, but fully non-linear function
Φ(α), it creates a series of αl values6. At each iteration l, a quadratic local function Φl(α) fullfilling the
boundary conditions Φl(0) = Φ(0), Φ′

l(0) = ∆ and Φl(αl−1) = Φ(αl−1) is minimised, where typically
∆ = Φ′(0). This leads to

Φl(α) = Φ(0) + ∆α +
Φ(αl−1) − Φ(0) − ∆αl−1

α2
l−1

α2 (A.11)

and minimising this gives

αmin = −
∆α2

l−1

2(Φ(αl−1) − Φ(0) − ∆αl−1)
. (A.12)

Powell then sets αl = min(αmin, 0.1αl−1). On each iteration the convergence of the line search is
tested. It is reached, if

Φ(αl) − Φ(0) < 0.1∆. (A.13)

which assures that the change in the function is small in comparison to its derivative and 0.1 is a factor
determined by experience. If this criterion is successful, the code exits the line search and updates all
function evaluations.

As a modification to the original code, we have added an adhoc fix that exits the line search in the
case of

Φ(αl) − Φ(0) > 0. (A.14)

This has been added as experience have shown that VMCON typically does not converge in these
situations, but if it is forced to caculate a new search direction in this way, it sometimes successfully
finishes. Note, that this cannot force VMCON to converge on any false solutions, as it only exits positively
when the convergence criterion A.5 is fulfilled.

Typically, the line search already converges after one iteration and, therefore, α = 1. Hence, the VMCON
line search has an upper limit of maximally 10 iterations before it terminating with ifail = 3 (c.f.
Table A.1). This is higher than Powell’s original limit of 5 to avoid a few cases of early termination
without a major effect on efficiency.

Within the line search VMCON also checks that the total number of function calls has not exceeded
maxfev = 100. If this is the case, it exits with error code ifail = 2. Both checks assure that the
routine stops, if it does not seem to be able to find a solution.

A.7 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
update

VMCON uses a quasi-Newtonian update, the Broyden-Fletcher-Goldfarb-Shanno update, in the
approximation of the Hessian of the Lagrange function. This means it is applicable to all continuously
differentiable objective and constraint functions. Note, that due to the constraints it is not actually
necessary for the Hessian of the solution to be positive definite, even though this is essential for the
convergence of the algorithm.

In quasi-Newtonian methods the identity matrix I is often chosen as an initial estimate of the Hessian
because of its positive definiteness. In some cases it can be helpful to chose a constant multiple of the

6In the actual code α =calpha and αl =alpha∗αl−1.

Appendix A The Optimisation Solver Explained 132

identity matrix instead. The BGFS update [7] is one way of revising the initial Hessian approximation
using the update of the iteration variable vector

ξ = xj − xj−1 (A.15)

and the update of the Jacobian of the Lagrange function

γ = ∇xL(xj , λj) −∇xL(xj−1, λj). (A.16)

Note that unless α = 1 in the line search, ξ 6= δ. To assure the positive definiteness of B Powell [6]
suggested a variation of the standard formalism that uses η instead of γ

η = θγ + (1 − θ)Bξ (A.17)

with

θ =

{

1 ξT γ ≥ 0.2ξTBξ
0.8ξT Bξ

ξT ξT γ < 0.2ξTBξ
(A.18)

to calculate a new approximation of the Hessian

Bnew = B −
BξξTB

ξTBξ
+

ηT η

ξT η
. (A.19)

Using the modified version of the BFGS update as suggested by Powell, furthermore, assures
superlinear convergence, even if the true Hessian is indefinite [82].

A.8 Symbols

In the previous sections the following conventions have been assumed: x, δ, ξ, γ and η are n-
dimensional vectors, where n is the number of iteration variables. c, λ, µ are m-dimensional vectors,
where m is the total number of constraints and ci, λi and µi (i = 1 . . .m) are their respective
components. B and I are n × n-dimensional matrices, while ∇xc is an n × m-dimensional matrix.

Appendix B

The Input File

The input file IN.DAT is used to change the values of the physics, engineering and other code parameters
from their default values, and to set up the numerics (constraint equations, iteration variables etc.)
required to define the problem to be solved. The user interface writes the input file, so it is not
necessary to edit it directly.

B.0.1 Tokamak, stellarator, RFP or IFE?

The default model is the tokamak. To select a stellarator, reversed field pinch or inertial fusion energy
plant, an additional input file is required, device.dat, which should contain a single character in the
first line, which is interpreted as follows:

0 : use tokamak model
1 : use stellarator model
2 : use reversed field pinch model
3 : use inertial fusion energy model

B.0.2 File format

Variables can be specified in any order in the input file. Comment lines start with a * character. Data
lines are of the form

variable = value

where variable is the name of one of the input parameters or iteration variables listed in the variable
descriptor file, and value is the (usually numerical) initial value required for that variable. (Arrays,
as opposed to scalar quantities, are treated differently — see below.) All input data are screened for
non-sensible values.

The following rules must be obeyed when writing an input file:

1. Each variable must be on a separate line.

2. Variable names can be upper case, lower case, or a mixture of both.

3. Spaces may not appear within a variable name or data value.

133

Appendix B The Input File 134

4. Other spaces within a line, and trailing spaces, are ignored.

5. Commas are not necessary between variables (but see below).

6. Data can extend over more than one line.

7. One-dimensional arrays can be explicitly subscripted, or unscripted, in which case the following
element order is assumed: A(1), A(2), A(3),...

8. At present, multiple dimension arrays can only be handled without reference to explicit
subscripts, in which case the following element order is assumed: B(1,1), B(2,1), B(3,1),...

The use of the input file to specify multiple dimension array elements is prone to error.

9. Unscripted array elements must be separated by commas.

10. Blank lines are allowed anywhere in the input file.

11. Lines starting with a * are assumed to be comments.

12. Comment lines starting with five or more asterisks (i.e. *****) are reproduced verbatim in the
output file. This feature is not recommended, as these comments are likely to become out of
date. The user interface does not support this feature.

13. In-line comments are usually ignored, but there can be problems if one contains a comma (,). If
this is the case, there must also be a comma after the variable’s value and before the comment.

It is useful to divide the input file into sections, using suitable comment lines, to help the user keep
related variables together.

The following is a valid fragment of an input file (the vertical lines are simply to help show the column
alignment):

* This line is a comment that will not appear in the output

***** This line is a comment that will appear in the output

boundl(1) = 2.5,

BOUNDU(10) = 3.,

BOUNDU(45) = 1,

* Another comment... Note that real values can be entered as if

* they were integers, and vice versa (but it’s not recommended...)

epsfcn = 10.e-4,

Ftol = 1.D-4,

* The next line sets the first five elements of array icc:

ICC = 2, 10, 11, 24, 31

* The next line sets the first ten elements of array ixc:

ixc = 10, 12, 3, 36, 48,

1, 2, 6, 13, 16,

IOPTIMZ = 1,

maxcal = 200

nsweep = 7

NEQNS = 5, This is an in-line comment

NVAR = 10, Another, but successfully containing a comma!

The following are invalid entries in the input file (Q: Why?!):

Appendix B The Input File 135

boundl(1,1) = 2.5,

BOUNDU(N) = 3.,

A line of ‘random’ characters like this will clearly wreak havoc

eps fcn = 10.e-4, ftol = 1.D-4

epsvmc = 1.0 e-4

ICC = 2 10 11 24 31

IOPTIMZ = 1.0, This will in fact be okay - but is not recommended

NEQNS = 5 An in-line comment on a line with only one comma (,) character

If the code encounters a problem reading the input file, it will stop immediately with a (hopefully)
useful error message. It may be worth looking at the contents of the output file as well, to help narrow
down on which line of the input file the problem might lie.

Appendix C

Optimisation Input File

The following is a typical input file used to run PROCESS in optimisation mode.

runtitle = ’Example input file’

--

---------------Constraint Equations---------------

neqns = 18

icc(1) = 1 * beta (consistency equation)

icc(2) = 2 * global power balance (consistency equation)

icc(3) = 5 * density upper limit

icc(4) = 8 * neutron wall load upper limit

icc(5) = 10 * toroidal field 1/r (consistency equation)

icc(6) = 11 * radial build (consistency equation)

icc(7) = 13 * burn time lower limit (pulse)

icc(8) = 15 * l-h power threshold limit

icc(9) = 16 * net electric power lower limit

icc(10) = 24 * beta upper limit

icc(11) = 26 * central solenoid eof current density upper limit

icc(12) = 27 * central solenoid bop current density upper limit

icc(13) = 30 * injection power upper limit

icc(14) = 31 * tf coil case stress upper limit (sctf)

icc(15) = 32 * tf coil conduit stress upper limit (sctf)

icc(16) = 33 * i_op / i_critical (tf coil) (sctf)

icc(17) = 34 * dump voltage upper limit (sctf)

icc(18) = 35 * j_winding pack/j_protection upper limit (sctf)

---------------Iteration Variables----------------

nvar = 31

ixc(1) = 2 * bt * Toroidal field on axis (t) (iteration variable 2)

boundl(2) = 0.01

boundu(2) = 100.0

ixc(2) = 3 * rmajor * Plasma major radius (m) (iteration variable 3)

boundl(3) = 0.1

boundu(3) = 13.0

ixc(3) = 4 * te * Volume averaged electron temperature (kev)

boundl(4) = 5.0

boundu(4) = 150.0

ixc(4) = 5 * beta * Total plasma beta (iteration variable 5)

boundl(5) = 0.001

boundu(5) = 1.0

136

Appendix C Optimisation Input File 137

ixc(5) = 6 * dene * Electron density (/m3) (iteration variable 6)

boundl(6) = 1e+19

boundu(6) = 1e+21

ixc(6) = 9 * fdene * F-value for density limit

boundl(9) = 0.001

boundu(9) = 1.2

ixc(7) = 10 * hfact * H factor on energy confinement times (iteration variable 10)

boundl(10) = 0.1

boundu(10) = 1.1

ixc(8) = 12 * oacdcp * Overall current density in tf coil inboard legs (a/m2)

boundl(12) = 100000.0

boundu(12) = 150000000.0

ixc(9) = 13 * tfcth * Inboard tf coil thickness; (centrepost for st) (m)

boundl(13) = 0.5

boundu(13) = 5.0

ixc(10) = 14 * fwalld * F-value for minimum wall load

boundl(14) = 0.001

boundu(14) = 1.0

ixc(11) = 16 * ohcth * Central solenoid thickness (m)

boundl(16) = 0.001

boundu(16) = 100.0

ixc(12) = 18 * q * Safety factor ’near’ plasma edge (iteration variable 18)

boundl(18) = 3.0

boundu(18) = 100.0

ixc(13) = 29 * bore * Central solenoid inboard radius (m)

boundl(29) = 0.1

boundu(29) = 10.0

ixc(14) = 36 * fbetatry * F-value for beta limit

boundl(36) = 0.001

boundu(36) = 1.0

ixc(15) = 37 * coheof * Central solenoid overall current density at end of flat-top (a/m2)

boundl(37) = 100000.0

boundu(37) = 100000000.0

ixc(16) = 38 * fjohc * F-value for central solenoid current at end-of-flattop

boundl(38) = 0.01

boundu(38) = 0.25

ixc(17) = 39 * fjohc0 * F-value for central solenoid current at beginning of pulse

boundl(39) = 0.001

boundu(39) = 0.25

ixc(18) = 41 * fcohbop * Ratio of central solenoid overall current density at

boundl(41) = 0.001

boundu(41) = 1.0

ixc(19) = 42 * gapoh * Gap between central solenoid and tf coil

boundl(42) = 0.05

boundu(42) = 0.1

ixc(20) = 44 * fvsbrnni * Fraction of the plasma current produced by

Appendix C Optimisation Input File 138

boundl(44) = 0.001

boundu(44) = 1.0

ixc(21) = 48 * fstrcase * F-value for tf coil case stress

boundl(48) = 0.001

boundu(48) = 1.0

ixc(22) = 49 * fstrcond * F-value for tf coil conduit stress

boundl(49) = 0.001

boundu(49) = 1.0

ixc(23) = 50 * fiooic * F-value for tf coil operating current / critical

boundl(50) = 0.001

boundu(50) = 0.5

ixc(24) = 51 * fvdump * F-value for dump voltage

boundl(51) = 0.001

boundu(51) = 1.0

ixc(25) = 53 * fjprot * F-value for tf coil winding pack current density

boundl(53) = 0.001

boundu(53) = 1.0

ixc(26) = 56 * tdmptf * Dump time for tf coil (s)

boundl(56) = 10.0

boundu(56) = 1000000.0

ixc(27) = 57 * thkcas * Inboard tf coil case outer (non-plasma side) thickness (m)

boundl(57) = 0.05

boundu(57) = 1.0

ixc(28) = 58 * thwcndut * Tf coil conduit case thickness (m)

boundl(58) = 0.004

boundu(58) = 1.0

ixc(29) = 59 * fcutfsu * Copper fraction of cable conductor (tf coils)

boundl(59) = 0.001

boundu(59) = 1.0

ixc(30) = 61 * gapds * Gap between inboard vacuum vessel and tf coil (m)

boundl(61) = 0.12

boundu(61) = 10.0

ixc(31) = 103 * flhthresh * F-value for l-h power threshold

boundl(103) = 1.0

boundu(103) = 1000000.0

-----------------Build Variables------------------

blnkith = 0.755 * Inboard blanket thickness (m);

blnkoth = 1.275 * Outboard blanket thickness (m);

bore = 2.5907 * Central solenoid inboard radius (m)

ddwex = 0.15 * External cryostat thickness (m)

ddwi = 0.32 * Vacuum vessel thickness (tf coil / shield) (m)

fwith = 0.025 * Inboard first wall thickness; initial estimate (m)

fwoth = 0.025 * Outboard first wall thickness; initial estimate (m)

gapds = 0.12 * Gap between inboard vacuum vessel and tf coil (m)

gapoh = 0.05 * Gap between central solenoid and tf coil

gapomin = 0.2 * Minimum gap between outboard vacuum vessel and tf coil (m)

ohcth = 0.86365 * Central solenoid thickness (m)

scrapli = 0.225 * Gap between plasma and first wall; inboard side (m)

scraplo = 0.225 * Gap between plasma and first wall; outboard side (m)

shldith = 0.3 * Inboard shield thickness (m)

Appendix C Optimisation Input File 139

shldoth = 0.8 * Outboard shield thickness (m)

shldtth = 0.3 * Upper/lower shield thickness (m);

tfcth = 0.79433 * Inboard tf coil thickness; (centrepost for st) (m)

vgap2 = 0.12 * Vertical gap between vacuum vessel and tf coil (m)

vgaptf = 1.6 * Vertical gap between x-point and divertor (m)

---------------Buildings Variables----------------

---------------Constraint Variables---------------

bmxlim = 14.0 * Maximum peak toroidal field (t)

fbetatry = 0.52645 * F-value for beta limit

fdene = 1.2 * F-value for density limit

fhldiv = 2.0 * F-value for divertor heat load

fjohc = 0.25 * F-value for central solenoid current at end-of-flattop

fjohc0 = 0.25 * F-value for central solenoid current at beginning of pulse

flhthresh = 1.0232 * F-value for l-h power threshold

fpeakb = 0.9229 * F-value for maximum toroidal field

fstrcond = 0.84986 * F-value for tf coil conduit stress

fvdump = 0.96778 * F-value for dump voltage

fwalld = 0.13514 * F-value for minimum wall load

pnetelin = 500.0 * Required net electric power (mw)

pseprmax = 17.0 * Maximum ratio of power crossing the separatrix to

tbrnmn = 7200.0 * Minimum burn time (s)

walalw = 8.0 * Allowable wall-load (mw/m2)

------------------Cost Variables------------------

abktflnc = 15.0 * Allowable first wall/blanket neutron

adivflnc = 20.0 * Allowable divertor heat fluence (mw-yr/m2)

fcap0 = 1.15 * Average cost of money for construction of plant

fcap0cp = 1.06 * Average cost of money for replaceable components

fcontng = 0.15 * Project contingency factor

fcr0 = 0.065 * Fixed charge rate during construction

ifueltyp = 1 * Switch * treat blanket divertor; first wall and

lsa = 2 * Level of safety assurance switch

output_costs = 0 * Switch for costs output * do not write cost-related outputs to file;

ratecdol = 0.06 * Effective cost of money in constant dollars

tlife = 40.0 * Plant life (years)

ucblvd = 280.0 * Unit cost for blanket vanadium ($/kg)

ucdiv = 500000.0 * Cost of divertor blade ($)

ucme = 300000000.0 * Unit cost of maintenance equipment ($/w**0;3)

-------------Current Drive Variables--------------

bscfmax = 0.99 * Maximum fraction of plasma current from bootstrap;

etanbi = 0.4 * Neutral beam wall plug to injector efficiency

frbeam = 1.0 * R_tangential / r_major for neutral beam injection

pinjalw = 50.0 * Maximum allowable value for injected power (mw)

----------------Divertor Variables----------------

anginc = 0.175 * Angle of incidence of field line on plate (rad)

divdum = 1 * Switch for divertor zeff model* 0=calc; 1=input

divfix = 0.621 * Divertor structure vertical thickness (m)

hldivlim = 10.0 * Heat load limit (mw/m2)

ksic = 1.4 * Power fraction for outboard double-null scrape-off plasma

prn1 = 0.4 * N-scrape-off / n-average plasma;

zeffdiv = 3.5 * Zeff in the divertor region (if divdum /= 0)

Appendix C Optimisation Input File 140

------------------Fwbs Variables------------------

fwclfr = 0.1 * First wall coolant fraction

-----------------Global Variables-----------------

-------------Heat Transport Variables-------------

etath = 0.375 * Thermal to electric conversion efficiency

fauxbop = 0.032 * Fraction of gross electric power to balance-of-plant

ffwlg = 0.01 * Fraction of first wall / divertor power to low grade heat

htpmw = 155.0 * Heat transport system electrical pump power (mw)

------------------Ife Variables-------------------

------------Impurity Radiation Module-------------

coreradius = 0.6 * Normalised radius defining the ’core’ region

fimp = 1.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00044, 5e-05 * Impurity number density fractions

impvar = 13 * Fimp element value to be varied if iteration

---------------------Numerics---------------------

ioptimz = 1 * Code operation switch * for no optimisation; hybrd only;

minmax = 1 * Switch for figure-of-merit * major radius

epsvmc = 1e-08 * Error tolerance for vmcon

----------------Pf Power Variables----------------

-----------------Pfcoil Variables-----------------

coheof = 12994000.0 * Central solenoid overall current density at end of flat-top (a/m2)

cptdin = 42200.0, 42200.0, 42200.0, 42200.0, 43000.0, 43000.0, 43000.0, 43000.0 * Peak current per turn input for

fcohbop = 0.93314 * Ratio of central solenoid overall current density at

ipfloc = 2, 2, 3, 3 * Switch for locating scheme of pf coil group i

isumatpf = 3 * Switch for superconductor material in pf coils * nbti;

ncls = 1, 1, 2, 2 * Number of pf coils in group j

ngrp = 4 * Number of groups of pf coils;

ohhghf = 0.9 * Central solenoid height / tf coil internal height

rjconpf = 11000000.0, 11000000.0, 6000000.0, 6000000.0, 8000000.0, 8000000.0, 8000000.0, 8000000.0 * Average winding

rpf2 = -1.825 * Offset (m) of radial position of ipfloc=2 pf coils

sigpfalw = 300.0 * Allowable stress in pf coils/central solenoid (mpa)

zref = 3.6, 1.2, 1.0, 2.8, 1.0, 1.0, 1.0, 1.0 * Pf coil vertical positioning adjuster

----------------Physics Variables-----------------

alphaj = 2.0 * Current profile index;

alphan = 1.0 * Density profile index

alphat = 1.0 * Temperature profile index

aspect = 3.5 * Aspect ratio (iteration variable 1)

beta = 0.034253 * Total plasma beta (iteration variable 5)

bt = 5.3983 * Toroidal field on axis (t) (iteration variable 2)

dene = 8.2808e+19 * Electron density (/m3) (iteration variable 6)

dnbeta = 3.0 * (troyon-like) coefficient for beta scaling;

fkzohm = 1.0245 * Zohm elongation scaling adjustment factor (ishape=2; 3)

fvsbrnni = 0.43898 * Fraction of the plasma current produced by

gamma = 0.3 * Ejima coefficient for resistive startup v-s formula

hfact = 1.1 * H factor on energy confinement times (iteration variable 10)

ibss = 4 * Switch for bootstrap current scaling * for sauter et al scaling

iculbl = 1 * Switch for beta limit scaling * apply limit to thermal beta;

Appendix C Optimisation Input File 141

impc = 0.0 * Carbon impurity multiplier (imprad_model=0 only)

impo = 0.0 * Oxygen impurity multiplier (imprad_model=0 only)

neped = 6.78e+19 * Electron density of pedestal (/m3) (ipedestal=1)

nesep = 2e+19 * Electron density at separatrix (/m3) (ipedestal=1)

rhopedn = 0.94 * R/a of density pedestal (ipedestal=1)

rhopedt = 0.94 * R/a of temperature pedestal (ipedestal=1)

teped = 5.5 * Electron temperature of pedestal (kev) (ipedestal=1)

tesep = 0.1 * Electron temperature at separatrix (kev) (ipedestal=1)

ishape = 2 * Switch for plasma cross-sectional shape calculation * set kappa to the natural elongation value

kappa = 1.7 * Plasma separatrix elongation (calculated if ishape > 0)

rmajor = 8.9216 * Plasma major radius (m) (iteration variable 3)

te = 12.959 * Volume averaged electron temperature (kev)

triang = 0.5 * Plasma separatrix triangularity (calculated if ishape=1; 3 or 4)

zfear = 1 * High-z impurity switch; 0=iron; 1=argon

-----------------Pulse Variables------------------

lpulse = 1 * Switch for reactor model * pulsed operation

------------------Rfp Variables-------------------

-------------------Scan Module--------------------

isweep = 1 * Number of scan points to calculate

nsweep = 1 * Switch denoting quantity to scan * aspect

sweep = 3.1 * Actual values to use in scan

--------------Stellarator Variables---------------

-----------------Tfcoil Variables-----------------

casths = 0.05 * Inboard tf coil sidewall case thickness (m)

cpttf = 65000.0 * Tf coil current per turn (a)

csytf = 990000000.0 * Yield strength of case (tf coils and cs coils) (pa)

fcutfsu = 0.61471 * Copper fraction of cable conductor (tf coils)

oacdcp = 12367000.0 * Overall current density in tf coil inboard legs (a/m2)

ripmax = 0.6 * Maximum allowable toroidal field ripple amplitude

tfno = 18.0 * Number of tf coils (default = 50 for stellarators)

tftmp = 4.75 * Peak helium coolant temperature in tf coils and pf coils (k)

thicndut = 0.001 * Conduit insulation thickness (m)

thkcas = 0.43968 * Inboard tf coil case outer (non-plasma side) thickness (m)

thwcndut = 0.004 * Tf coil conduit case thickness (m)

tmargmin = 1.7 * Minimum allowable temperature margin (cs and tf coils) (k)

vftf = 0.333 * Coolant fraction of tf coil leg (itfsup=0)

-----------------Times Variables------------------

tburn = 10000.0 * Burn time (s) (calculated if lpulse=1)

-----------------Vacuum Variables-----------------

Appendix D

Non-optimisation Input File

The following is a typical input file used to run PROCESS in non-optimisation mode. Comments in
[. . .] have been added to the right of each line.

* Numerics information [Comment]

NEQNS = 14, [Number of active constraint equations]

NVAR = 14, [Number of active iteration variables]

ICC = 1, 2, 10, 11, 7, 16, 24, 5, 31, 32, 33, 34, 35, 36, [Constraint eqns]

ixc = 5, 10, 12, 3, 7, 6, 36, 9, 48, 49, 50, 51, 53, 54, [Iteration variables]

IOPTIMZ = -1, [Turn off optimisation]

ISWEEP=0 [No scans (non-optimisation mode)]

* F-values and limits

FBETATRY = 1.0 [N.B. active iteration variable 36]

* Physics parameters

ASPECT = 3.5, [Machine aspect ratio]

BETA = 0.042, [N.B. active iteration variable 5]

BT = 6., [Toroidal field on axis]

DENE = 1.5e20, [N.B. active iteration variable 6]

FVSBRNNI = 1.0, [Non-inductive volt seconds fraction]

DNBETA = 3.5, [Beta g coefficient]

HFACT = 2., [N.B. active iteration variable 10]

ICURR = 4, [Use ITER current scaling]

ISC = 6, [Use ITER 89-P confinement time scaling law]

IINVQD = 1, [Use inverse quadrature]

IITER = 1, [Use ITER fusion power calculations]

ISHAPE = 0, [Use input values for KAPPA and TRIANG]

KAPPA = 2.218, [Plasma elongation]

Q = 3.0, [Edge safety factor]

RMAJOR = 7.0, [N.B. active iteration variable 3]

RNBEAM = 0.0002, [N.B. active iteration variable 7]

TBURN = 227.9 [Burn time]

TE = 15., [Electron temperature]

TRIANG = 0.6 [Plasma triangularity]

* Current drive parameters

IRFCD = 1, [Use current drive]

IEFRF = 5 [Use ITER neutral beam current drive]

FEFFCD = 3., [Artificially enhance efficiency]

142

Appendix D Non-optimisation Input File 143

* Divertor parameters

ANGINC=0.262, [Angle of incidence of field lines on plate]

PRN1=0.285 [Density ratio]

* Machine build

BORE = 0.12, [Machine bore]

OHCTH = 0.1, [central solenoid thickness]

GAPOH = 0.08, [Inboard gap]

TFCTH = 0.9, [Inboard TF coil leg thickness]

DDWI = 0.07, [Vacuum vessel thickness]

SHLDITH = 0.69, [Inboard shield thickness]

BLNKITH = 0.115, [Inboard blanket thickness]

FWITH = 0.035, [Inboard first wall thickness]

SCRAPLI = 0.14, [Inboard scrape-off layer thickness]

SCRAPLO = 0.15, [Outboard scrape-off layer thickness]

FWOTH = 0.035, [Outboard first wall thickness]

BLNKOTH = 0.235, [Outboard blanket thickness]

SHLDOTH = 1.05, [Outboard shield thickness]

GAPOMIN = 0.21, [Outboard gap]

VGAPTF = 0, [Vertical gap]

* First wall, blanket, shield parameters

LBLNKT=0 [Use old blanket model]

DENSTL=7800. [Steel density]

* TF coil parameters

OACDCP = 1.4e7, [N.B. active iteration variable 12]

ITFSUP = 1, [Use superconducting TF coils]

RIPMAX = 5., [Maximum TF ripple]

* PF coil parameters

NGRP = 3, [Three groups of PF coils]

IPFLOC = 1,2,3, [Locations for each group]

NCLS = 2,2,2,1, [Number of coils in each group]

COHEOF = 1.85e7, [central solenoid current at End Of Flat-top]

FCOHBOP = 0.9, [central solenoid current at Begin. Of Pulse / COHEOF]

ROUTR = 1.5, [Radial position for group 3]

ZREF(3) = 2.5, [Z position for group 3]

OHHGHF = .71 [Height ratio central solenoid / TF coil]

* Vacuum system parameters

NTYPE = 1 [Use cryopump]

* Heat transport parameters

ETATH=0.35 [Thermal to electric conversion efficiency]

FMGDMW = 0. [Power to MGF units]

BASEEL=5.e6 [Base plant electric load]

ISCENR=2 [Energy store option]

* Buildings

FNDT = 2. [Foundation thickness]

EFLOOR=1.d5 [Effective total floor space]

Appendix D Non-optimisation Input File 144

* Costs

IREACTOR = 1, [Calculate cost of electricity]

IFUELTYP = 0 [Treat blanket, first wall etc as capital cost]

UCHRS = 87.9, [Unit cost of heat rejection system]

UCCPCL1 = 250, [Unit cost of high strength tapered copper]

UCCPCLB = 150 [Unit cost of TF outer leg plate coils]

	Introduction
	Rationale
	History
	Sources of information

	Program Overview --- The Fundamental Concepts
	Equation Solvers
	Non-optimisation mode
	Optimisation mode
	Scans

	The Variable Descriptor File
	Input Parameters
	Iteration Variables
	Constraint Equations
	Consistency equations
	Limit equations

	Figures of Merit
	Scanning Variables

	Physics, Engineering and Other Models
	Tokamak Power Plant
	Radial and vertical build
	Plasma physics models
	Armour, first wall and breeding blanket
	Shield
	Divertor
	Toroidal field coils
	Poloidal field coils
	Central solenoid
	Auxiliary power systems: heating and current drive
	Structural components
	Cryostat and vacuum system
	Power conversion and heat dissipation systems
	Buildings

	Spherical Tokamak Model
	Spherical tokamak switches

	Pulsed Plant Operation
	Thermal cycling package
	First wall coolant temperature rise limit
	First wall peak temperature limit
	Start-up power requirements
	Plasma current ramp-up time
	Burn time
	Thermal storage

	Hydrogen Production Facility
	Stellarator Model
	Stellarator physics
	Machine configuration

	Reversed Field Pinch Model
	RFP physics
	TF coils
	Ohmic heating coils
	EF coils
	Divertor
	Code modifications

	Inertial Fusion Energy Model
	Safety and Environment Models
	Neutronics
	Activation and inventory information

	Cost Models
	1990 cost model (cost_model = 0)
	2015 Kovari model (cost_model = 1)

	Plant availability

	Running PROCESS
	Environment set-up
	User Interface
	Executing the Code
	The Input File
	The Output Files
	Optimisation mode
	Non-optimisation mode
	Troubleshooting
	Error handling
	General problems
	Optimisation problems
	Unfeasible results
	Hints

	Changing the Source Code: New Models, Variables and Constraints
	Source Code Modification
	Changing the Fortran code
	Source code documentation

	Input Parameters
	Iteration Variables
	Other Global Variables
	Constraint Equations
	Figures of Merit
	Scanning Variables
	Submission of New Models
	Code Structure
	Numerics modules
	Physics modules
	Engineering modules
	Costing module
	Other modules

	Utility Programs
	Executables
	Turn output into input (write_new_in_dat.py)
	Randomly vary the starting point (run_process.py)
	List PROCESS runs with comments (build_index.py)
	test_process.py
	Output plotting: create data file (make_plot_dat.py)
	Create a two-page summary (plot_proc.py)
	output_data.py
	plot_sweep.py
	Plot scan results (plot_mfile_sweep.py)
	Plot iteration variables and constraint residuals (diagnose_process.py)
	fit_profile.py
	Step from one model to another (a_to_b.py)
	N-Dimensional Scanner Utility
	Uncertainty Tools
	create_dicts.py
	Batch Jobs
	mfile_comparison.py
	test_suite.py

	Python Libraries
	in_dat.py
	mfile.py
	process_funcs.py
	process_config.py
	process_dicts.py
	a_to_b_config.py
	proc_plot_func.py
	diagnose_funcs.py

	User Interface

	Code Management Tools
	The Makefile
	Compilation
	Archiving utilities
	Code documentation

	Automatic Documentation
	Code Updates and Release Procedure
	Initial access to the source code
	Git workflow
	Full code rebuild

	Acknowledgements & Bibliography
	The Optimisation Solver Explained
	The General Nonlinear Programming Problem
	The Lagrange Method
	Sequential Quadratic Programming (SQP)
	VMCON
	The Quadratic Subproblem (QSP)
	The Line Search
	The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton update
	Symbols

	The Input File
	Tokamak, stellarator, RFP or IFE?
	File format

	Optimisation Input File
	Non-optimisation Input File

